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Preface

The main purpose of this thesis research is to apply dithering techniques for
enhanced identifiability of uncertain parameters using moving-bank Multiple Model
Adaptive Estimation and Control (MMAE/MMAC) algorithms. These techniques are
applied to the SPICE 2 flexible space structure in order to quell induced structural
vibrations. Results of this research indicate that purposefully constructed dither signals
can enhance parameter identification to a s:gnificant degree.

I must extend great thanks and gratitude to Dr. Peter Maybeck for his patience and
thoughtful guidance. Dr. Maybeck provided the utmost encouragement and enthusiasm
throughout this endeavor, without which I would not have been able to succeed. I also
wish to thank Capt Greg Schiller for all his help with System Build and Word. I would
not have been able to make it without you Greg. A bit of thanks must go to Capt Robert
Nielsen for always having his Estimation and Control texts available for my perusal in the
Nav Lab. The biggest thank you *owever, must go to my wife, Ginger, and son, Orren,
for giving me the time and sf- “ needed to complete this work. Thank you Ginger for
keeping your sanity in tack and for hanging in there until the end.
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Abstract

Dithering techniques for enhancing uncertain parameter identification with moving-
bank Multiple Model Adaptive Estimation (MMAE) and Control (MMAC) algorithms are
analyzed in this thesis. The dithering techniques and multiple-model adaptive algorithms
are applied to the SPICE 2 flexible space structure.

The dithering techniques studied include purposefully constructed square wave,
sine wave (fixed and swept frequency) and wide-band noise wave forms. Purposeful rigid-
body slew commands are also used in order to excite the structure’s flexible bending
modes. Dither inputs into the structure are performed in an effort to enhance the open-
loop identifiability of the uncertain parameter, namely a scalar multiplier on the undamped
natural frequencies of the flexible bending modes. Correct identification of this parameter
enables the MMAE and MMAC algorithms to quell any vibrations induced into the
structure, in the face of varying parameter values.

The results of this study indicate that purposefully constructed dither signals do
enhance parameter identification significantly. The parameter identification enhancement
due to rigid-body slew command input was shown to be less effective than that with

sinusoid and wide band noise dither inputs, however.




MULTIPLE MODEL ADAPTIVE CONTROL OF A LARGE
FLEXIBLE SPACE STRUCTURE WITH PURPOSEFUL
DITHER FOR ENHANCED IDENTIFIABILITY

1. Introduction

Kalman filters are very useful in providing state estimates for systems driven by
known inputs and white Gaussian noise. In any state estimation problem, however, there
is the underlying problem of obtaining a correct dynamics model for the filter. It may well
be possible to obtain a model for a typical system or one for an assumed set of conditions,
but real systems do not stay constant. The dynamic parameters describing a system will
undoubtedly vary over time. (We term these uncertain parameters). 'Taus, the problem is

a single Kalman filter model may not be robust enough to meet desired specifications.

There are many methods to overcome the uncertain parameter problem, and these
are thoroughly discussed in [20: Chapter 10]. One particular method will be addressed
here: Multiple Model Adaptive Estimation (MMAE) [20: 129-136]. With this method are
developed various (multiple) Kalman filter models, each based on a different value of a set
of uncertain parameters. For example, the uncertain parameters for a second order system
might be the damping ratio and the undamped natural frequency. If these were each
known to vary over a particular range, then multiple filters could be constructed, each

with a different value for the damping ratio and undamped natural frequency.
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With the multiple models developed, each is (conceptually) used as the basis for a
single elemental filter to form a “bank” or column of filters. The output of each filter (the
state estimate based on a particular parameter value) is given a probability that it is the
estimate based on the correct parameter value. This probability is calculated from a
history of measurement information and from known system characteristics and noise
statistics (to which adaptation is not required). Each probabilistically weighted estimate is
then summed, resulting in a probabilistically weighted average of the single filter state

estimates.

The structure of the Multiple Model Adaptive Estimator can be seen in Figure 1-1.
As shown, the bank consists of K separate Kalman filters, each based on particular
parameter value from the set {al, a,, ..., a x}- Each filter obtains the current
measurement input, Z, and from this outputs a residual, r,, and a state estimate, ik. The
residual (the difference between the measurement and best prediction of that measurement
based on previous data) is used to compute the conditional probability, which is then used

to form the probabilistically weighted average of the K state estimates.

The MMAE presented thus far is considered a “fixed-bank” MMAE, and as it
appears in Figure 1-1, the MMAE is based upon a finite number of parameter points, i.e.,
a finite number of Kalman filters. This finite size of the parameter set used for the MMAE
is necessary because, if the parameter set were to consist of all possible points from a
continuous space, the number of filters required would be infinite. Thus, only a finite
number of points in the appropriate range of values are chosen for the parameter set. This
is then called a discretized parameter space. Now, even with a finite number of Kalman
filters within this discretized parameter space, the number of filters can be quite large and

thus produce a considerable computational burden.
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Figure 1-1. Multiple Model Adaptive Estimator{20:132]

To lessen this burden, the concept of a subset of the original parameter set is
introduced. This subset is a small grouping within the parameter space, always centered
on the current estimate of the true parameter value. This small subset can then “move”
within the entire parameter space, depending on the location of the parameter estimate,

and thus the term “moving bank” [17]. A discussion on the moving bank will be covered

in more detail in Section 1.2.3.
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With the state estimate in hand, we will now discuss the controller to be used in
this research. Corresponding to linear Kalman filters driven by white Gaussian noise, a
controller based on a Linear model with a Quadratic cost criterion driven by white
Gaussian noise (LQG) will be used. This stochastic controller will utilize the same K
state est:mates produced by the MMAE. Each separate state estimate is multiplied with a
corresponding controller gain of a deterministic optimal regulator, —Gc', to synthesize the
optimal LQG controller for that specific parameter vector value. Just as there are K
separate Kalman filters, each based on the parameter value, a,, there are K separate
controller gains, each based on the parameter value, a,. The structure of this Multiple

Model Adaptive Controller (MMAC) can be seen in Figure 1-2. As shown, the controller

gains are cascaded to form control inputs, u,. The same probabilities used in the MMAE

are used here to form a probabilistically weighted average control input, U.

The research involved in this thesis is a direct continuation of the work of
Gustafson [2, 3]. Gustafson applied the moving-bank MMAE and MMAC concepts to a
large flexible structure developed at Phillips Laboratory, Kirtland AFB, NM (see Figure 1-
3). This structure is part of a SPace Integrated Controls Experiment (SPICE). Section
1.2.1 gives a brief description of the SPICE model. At the time of Gustafson’s work, the
second model had been developed (SPICE 2). The primary goal of this thesis is to
develop an MMAE/MMAC to quell any vibrations which are induced into the structure,
despite uncertain parameters. Earlier contractor work [14] yielded a controller design that
would almost meet design specifications if the parameters were assumed to be correctly
known, but which caused closed-loop system instabilities if the real parameter values
varied by as little as 2% from the assumed values. Gustafson did accomplish this goal, but
the desired quelling specifications set by Phillips Laboratory were not met. (Phillips
Laboratory requires the Line-of-Sight, or LOS, deviation to be within 1 p-radian.) The
work of this thesis will be to apply enhancements to the existing models put forth by
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Figure 1-2. Multiple Model Adaptive Controller [21: 254]

Gustafson in order to determine what, if any, improvement in the MMAE/MMAC can be

made towards meeting the desired quelling specifications. These enhancements include:

Use dithering techniques to enhance uncertain parameter identifiability, prior to

er.gaging closed-loop control

Investigate the effects of purposeful rigid-body slew commands in regard to

enhancing uncenzin parameter identifiability
Increase the measurement sensor precision

Investigate an alternative parameter space discretization
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1.1  Notation

The notation used in this thesis is consistent with that of [19]. Scalars in either
upper or lower case letters are denotes by italic type. Deterministic vectors and matrices
are denoted by boldface roman lower and upper case letters, respectively, e.g., X and A.
Stochastic vectors and matrices are denoted by boldface sans serif lower and upper case
letters, respectively, e.g., X and A. Similar to deterministic vectors, realizations of

random variables are denoted by boldface roman, e.g., X.

1.2  Background

This section presents an introduction to four areas, the concepts for which will be
fully developed in Chapters 2 and 3. These areas are: (1) the system model, (2) Multiple
Model Adaptive Estimation (MMAE), (3) Moving-Bank MMAE and (4) Moving-Bank
Multiple Model Adaptive Control (MMAC).

1.2.1 System Model

The full physical and mathematical description of the SPICE 2 model will be
presented in Chapter 3. Physically, the SPICE 2 structure is 6.19 meters wide at the base
and is 8.14 meters tall [14]. In the simplest of terms, the space structure can be described
as a tripod structure with a large mirror assembly at its base and a small mirror assembly at
the top. In a realistic environment, the structure will experience vibrations (the three
tripod legs will vibrate, causing the two mirrors to be out of alignment; high frequency
oscillations of the stiff mirror assemblies will also take place, but with much smaller
amplitude and effect on line-of-sight). In order to quell these vibrations, actuators are

used which are located on the tripod legs and around the base of the structure. In order
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for this quelling of the structural vibrations to be accomplished, the true structural

parameters must be accurately estimated (done by the MMAE). The parameters to be
estimated consist of the undamped natural frequencies, ®,, of the structural bending

modes (see Chapter 2). Previous work using a simpler structural mode! used the
undamped natural frequencies, ®,, and the damping ratios, {, of the structural bending

modes [1, 2,3, 5,7, 8, 11, 12, 22, 23, 26, 29, 32]. However, Gustafson [2: Chapter 5 pg.




36] discovered that, for the SPICE 2 model, adaptation to the damping ratio parameter

was not needed and so is not used in this research.

1.2.2 Multiple Model Adaptive Estimation

As indicated in the introductory paragraphs, the need for an adaptive estimator
comes from the problem of uncertain parameters in the system model from which a single
Kalman filter might be formed. The muitiple model approach utilized here involves a set
of parameters representing various discrete values each parameter can take on in a real
environment. For the discussion that follows, an example parameter space is formed using
the undamped natural frequency and damping ratio as the two uncertain parameters. The
discretized parameter space is formed by assuming a range of values for each of the two
parameters. For example, let ®, and { each take on 10 different values. Then 100
combinations of ®, and { would be formed (K =100). In this case there would also be
100 Kalman filters, each corresponding to a different combination of @, and {. This
100-point parameter space can be thought of existing in a 2-dimensional grid. This idea is
illustrated in Figure 14.

This two-dimensional layout of the filters is important because is allows us to
visualize the K Kalman filters as a bank which surrounds the location of the true
parameter value (or actually a best estimate of that location). The MMAE algorithm is
based on utilizing the residual information from each filter and the assumption that the
filter with the smallest residual will most likely be the filter with parameter values that are
closest to the true values [20: 133). The residuals, r,, are used to produce a probability
weighting factor. The smaller the residual, the larger the probability which is assigned to
that filter’s output. Then, as indicated in the introduction, this probability is used to form
the probabilistically weighted state estimate. Figure 1-1 illustrates the pure Bayesian
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Figure 1-4. Full-Bank MMAE

formulation of the state estimate. There are, however, other methods of utilizing the
residuals in calculating the probabilities and forming the probabilistically weighted state
estimate. The four methods of performing this are: (1) Bayesian, (2) Maximum A
Posteriori (MAP), (3) Bayesian with a Maximum Entropy with Identity Covariance
(ME/T) computation, and (4) MAP with ME/I. These four methods will be fully discussed
in Chapter 2.

1.2.3 Moving-Bank MMAE

The example parameter space considered in this discussion requires 100 Kalman
filters to be run simultaneously. Obviously, this is would be quite a burden for any on-line
computer application. As indicated in the introduction, the concept of a moving-bank of

filters is introduced in order to alleviate this computational burden. The number of filters




required in this smaller bank is that which will surround the parameter value. For our two-
dimensional parameter space, nine filters have typically been used. This configuration
allows a small but reasonable number of filters to perform the task of state and parameter
estimation with the added benefit of having one central point for the basis of an elemental
filter. In general we say the smaller moving-bank consists of J filters (parameter points),
where J < K. The arrangement of parameter points discussed to this point is called finely
discretized (all discrete points are adjacent to each other). Now, when the true parameter
values vary, within the confines of the defined parameter space, the small subset of filters
will “move” in order to keep the computed estimate of the true parameter value centered
within the bank. This moving-bank concept is illustrated in Figure 1-5. As the parameter
values change and “move” to a new location in the parameter space, so does the bank of
filters. What is actually taking place is the activating and deactivating the appropriate

Kalman filters, such that the bank is centered properly.

The moving-bank should be able to track a slowly varying parameter in this
manner. However, should the parameter “jump” in value a great distance from its original
location in the parameter space, a new logic must be implemented. If the true parameter
value changes to a location in the parameter space outside the “bounds” of the finely
discretized bank, all filters associated with the finely discretized bank will have large
residuals, and the bank configuration must change to a coarse discretization, which uses
filters along the outer edges of the parameter space. In this way the true parameter value
will be encompassed by the bank. Once the new location of the parameter value is found,
the bank can be finely discretized again. The coarse discretization concept is illustrated in
Figure 1-6. Also note that the coarse discretization can be used during an initial

acquisition when the parameter value is not known.
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Figure 1-5. Moving Bank MMAE Fine Discretization

Just as there are several methods of implementing the MMAE, there are several
methods for the decision-making logic of when and in what direction to move the bank,
and when to expand and contract the bank. These methods are: (1) Residual Monitoring,
(2) Parameter Position Estimate Monitoring, (3) Probability Monitoring, and (4)
Parameter Estimation Error Covariance Monitoring. These methods will be fully

discussed in Chapter 2.

1.2.4 Moving-Bank MMAC

The LQG stochastic controller will be implemented in the form of a regulator since
the desired quelling action necessitates controlling all the structural states to zero [18, 21:
19-20]. Rigid-body states are not included in the discussion of the Kalman filter or the

stochastic controller, since the purpose of the filter/controller is to quell the vibrating
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Figure 1-6. Moving-Bank MMAE Coarse Discretization

motion of the structure, not the rigid-body motion. A truth model rigid-body motion will
be discussed in Chapters 2, 3 and 4.

The LQG stochastic controller used in this research is based on the cerzainty
equivalence property [21: 17]. That is, the controller gain, Gc', is formed assuming that
the optimal gain calculated for perfectly known states is the same optimal gain to be used
with state estimates. Each control gain, as shown in Figure 1-2, is calculated for each of
the K parameter values, just as with the K Kalman filters in the MMAE design.

The combination of the MMAE output with the multiple-model LQG controller
can take on many different forms. Figure 1-2 illustrates a pure MMAC structure with
each Kalman filter cascaded with a single LQG controller that makes the same parameter
value assumption as the corresponding filter. There are slight variations of this method
called “Modified” MMAC Control and MMAC with MAP control. The pure MMAC and
“Modified” MMAC methods are referred to as Bayesian because their output is
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probabilistically weighted using the hypothesis probability calculation, as shown in Figure
1-2. The MMAC with MAP method is a form of MMAC, but instead of using each
conditional probability and elemental controller to form a probability-weighted average (as
with the Bayesian form), this method picks the probability with the largest value and uses
the associated single elemental controller to form the output control.

Other forms of multiple model control exist and are termed MMAE based control.
These methods differ from the MMAC forms in the way the state estimates are utilized
and/or in the way the final control output is formed. The MMAE based methods of
control are: Single Fixed-Gain Control, Single Changeable-Gain Control, and “Modified”
Single Changeable-Gain Control. Each of these methods of control will be discussed in
Chapter 2.

13 Past Research

This section will present a brief summary of research accomplished in the areas of:
(1) applying MMAE/MMAC methods to flexible structures and (2) applying dithering

techniques to enhance parameter identifiability.

1.3.1 MMAE/MMAC Techniques

Research was begun by Hentz [5, 22] in the area of multiple model filters applied
to the problem of quelling vibrations in a flexible structure. Hentz’s research showed that
the moving-bank, versus the fixed- or full-bank, adaptive filter and controller were viable
solutions. The moving-bank MMAE/MMAC reduces the computational load substantially
while maintaining adequate performance. Hentz showed this load reduction to be an order

of magnitude lower [5]). Thus, a foundation was laid for continued research in this area.
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Filios’ [1] research indicated that ambiguity function analysis can provide insight as
to which (if any) unknown parameters need to be estimated. This insight can be very

useful when approaching a new system for the first time.

Karnick [7, 8] applied the MMAE/MMAC methods to a more complex model than
had been done previously, namely that of a two-bay truss structure attached to a
spacecraft. Karnick’s algorithms had problems, though, correctly identifying the uncertain
parameters, due to the sensors being too imprecise. However, his efforts did give accurate

state estimation.

Lashlee [11, 12] followed up on the problems encountered by Kamick. He found
that with a better-tuned filter and more accurate measurement data, the parameters and
states could be accurately estimated. Basically, if there is too much measurement noise,
the multiple model algorithm cannot distinguish between good and bad models of the
uncertain parameters. Lashlee also found that the parameter space discretization plays an

importanrt role in the parameter identification performance.

Van Der Werken [32] applied the six-state filter from Lashlee’s research to a
higher-order “truth model” for simulation (24-state truth model versus a 6-state filter
model). In his robustness study, he showed tha* the MMAE and MMAC performed
poorly when comparing truth and filter model bending mode states directly.

Schore [23, 29] continued Van Der Werken’s robustness study. His approach was
to compare the truth and filter model representations of the flexed space structure at
various physical locations on the structure. That is, he compared the position and velocity
(the shape of the structure) at the two ends and at the midpoint of the two-bay truss, truth
versus filter [29: Chapter 1 pg. 22]. Using this method, he showed that the reduced order

filter model did not seriously degrade the performance of the estimator or controller. In
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fact, his MMAC maintained very adequate control in the face of an unmodeled
disturbance.

Moyle’s [26] research concentrated on streamlining the software that had been
developed thus far and on further filter and controller tuning to enhance performance.
Moyle’s research showed marked performance improvement of the MMAE/MMAC, when
compared against an artificially informed benchmark (an algorithm that was artificially
provided knowledge of the true parameter). This performance was obtained by
implementing a Maximum Entropy with Identity (ME/I) covariance computation approach
(see Section 2.3.2) to parameter estimation along with the “Modified” MMAC algorithm
for which the filter and controller were well tuned [26: Chapter 1 pp 13-15]. The ME/
approach and the “Modified” MMAC algorithm will be fully discussed in Chapter 2.

The most recent work is that of Gustafson [2, 3], who applied the current research
to the SPICE 2 model. This was the first time this line of research was applied to a total,
actual system. Gustafson’s work showed good performance of the moving-bank
MMAE/MMAC with a 134-state filter model versus a 194-state truth model. However,
with more stringently reduced order filter models, the MMAC could not quell the
disturbance vibrations adequately. Additionally, the good performance of the controller
was marred by its inability to keep the LOS deviations within the 1 p-radian specification.
The inability to meet this specification was attributed to poor actuator and sensor
performance and did not lie in the MMAE/MMAC adaptation process: even a nonadaptive

artificially informed controller failed to meet the specification.

Gustafson also ran tests using an expanded H matrix which resulted in better
quelling, but the specification was still not met [2: Chapter 5 pg. 3]). This expanded H
matrix simulated relative position and velocity measurements of the sensor measurement

points on the structure. These extra measurements were not physically realizable but were
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useful for a comparison study. The performance improvement shown here can be equated
to an expected equal or greater performance gain if the sensor measurement precision is

improved.

1.3.2 Dithering Applications

Much work has been done in the past using dither signals to enhance parameter
identifiability. A few of the applications which utilized these techniques will be presented

here.

In this direct line of research prior to Gustafson [1, 5-8, 11, 12, 22, 23, 26, 29,
32], dithering signals were input to the system in order to obtain an adequate uncertain
parameter identification; there were no specifically designed dithers, just some rather
arbitrarily chosen excitation signals. This was necessary because the dynamics driving
noise was too small for the parameters to be identified without some form of forced
excitation. The system needed to be “shaken up” with a dither signal in order for any
parameter identification to take place. Typicallv, square wave dither signals were used in
this previous work, but with no purposeful structure. However, with the SPICE 2 model
used by Gustafson, a sufficient magnitude of dynamics driving noise was present to
operate somewhat successfully in open loop without the use of a dither signal, so none
was applied. Gustafson showed that the MMAE was somewhat able to track a varying
parameter under these conditions [2: Chapter 5 pp. 46-49].

Menke and Maybeck [24, 25] used a variety of dither input signals in an MMAC
application for detecting sensor and/or actuator failures in a flight control system: sine

wave, square wave, triangle wave, and pulse trains, as well as purposeful maneuver
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commands. All of these dither inputs performed well, but the sine wave gave the best
performance {24: 203].

Hanlon [4: 36-37] looked at the eigenvalues in a flight control system to determine
the best sine wave dither signal to use for enhancing failure detection. The eigenvalues
provided direct insight as to which dither frequency to use. Before using the insight
gained from the eigenvalues, an arbitrarily chosen dither frequency was chosen which did

not produce useful results.

1.4  Objectives

The purpose of this thesis is threefold. First, various dithering techniques will be
implemented in order to enhance uncertain parameter identifiability for the SPICE 2 model
in open-loop estimation prior to closed-loop control. It is envisioned that this will provide
enhanced initial parameter estimates when the closed-loop control system is turned on;
there is enough excitation in the closed-loop phase that the dither would only be used in
the prior open-loop phase. The research will also explore whether or not naturally
occurring slew commands will excite the system sufficiently without dithering. Second,
increased sensor measurement precision will be investigated in an effort to increase
controller performance (decrease LOS deviations). It is anticipated that reduced-order
design models will be more fruitful once measurement precision is improved. Third, an
alternative to Gustafson’s discretized parameter space will be developed in an order to

improve MMAE/MMAC overall performance.
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1.5  Scope

Since this thesis research is a direct continuation of Gustafson’s [2], this research
will utilize the existing SPICE 2 model in addition to the Kalman filter and controller
tuning developed by Gustafson, except where modifications are necessary (see next
section). The single unknown parameter (undamped natural frequency of the structural
bending modes) will continued to be used in this research. The same discretized
parameter space developed by Gustafson will also be used, except when a new

discretization is formed.

The limits placed on the modeling are as follows. The truth model is a linearized
model for the SPICE 2 structure. The Kalman filter is based on a reduced-order linear
time-invariant model, driven by stationary noise. The LQG controller is developed from
constant state and control weighting matrices with no cross-weighting matrix. Gain
transients in both the filter and controller will be ignored, in order to exploit the steady-
state constant-gain Kalman filter in the MMAE, and the steady-state constant-gain LQG
controller in the MMAC.

1.6  Approach

To apply the dithering techniques, two items will be accomplished. First, several
forms of dither signal inputs will be considered in order to observe the effects each has on
enhancing parameter identification. The different inputs to be considered are: (1) square
wave, (2) sine wave, (3) swept frequency sine wave, (4) wide-band noise (limited to the
expected tand of undamped natural frequencies). Second, rigid-body states will be
augmented to the SPICE 2 structural model to simulate a commanded rotation or slewing

motion of the structure. The effects of this rigid-body motion will be observed with
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respect to how it affects parameter identification through excitation of the bending modes,
just as with the dither signal inputs. Third, simulations will be run with the sensor
measurement precision increased by one, two or more orders of magnitude. With an
increase in the sensor measurement precision (decrease in sensor noise), the effects in the
MMAC performance will be observed when based on more stringently reduced-order

models (with associated decrease of computational loading).

With the dithering inputs, a comparison will be accomplished among the various
techniques to determine which, if any, is “best”. Minor modifications to the existing

software [2] will be required.

Increasing the sensor measurement precision will require retuning of the existing
Kalman filter designs (assumed dynamics noise strength, Q, and assumed measurement
noise covariance, R). Before changing the precision by one or two orders of magnitude,
the effects of perfect measurements (no measurement noise) will be determined. In this
way, a limiting case in the MMAC performance will be known, with regard to increased

sensor measurement precision.

The change to the parameter space discretization will be either to change the
location of discrete point values, or to allow a different number of points, or both. The
existing span of values for the undamped natural frequencies will be maintained, however,
for the purpose of making an accurate comparison of the MMAE/MMAC performance
with the old and new parameter space discretization. Minor software modifications to the

existing software will be required here as well.
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1.7  Summary

A general introduction and background in the area of utilizing the Kalman filter
and LQG controller with a multiple model approach to achieving desired performance
despite parameter uncertainty were presented in this chapter. The techniques to be applied
toward this research were also presented, namely: dithering techniques for uncertain
parameter open-loop identification enhancement, increased sensor measurement precision
for improved MMAE/MMAC performance, and modified parameter discretization for

better parameter tracking performance.

To motivate the desire for the use of the multiple model approach and the dithering
techniques to be implemented, a summary of previous research in these areas was also
presented. The specific objectives of this research along with a defined scope and general

approach (methodology) were then presented.

Chapter 2 will develop the fundamental concepts of the Kalman filter and LQG
controller. These concepts will then be used to develop the moving-bank MMAE and
MMAC algorithms. Chapter 2 will also present a section on applying dithering input
signals and a section on mathematical modeling of the physical structure. Chapter 3 will
present a summary of the SPICE 2 structure model developed by Gustafson [2: Chapter
3]. Additionally, Chapter 3 will include the development for augmenting rigid-body states
to the SPICE 2 model. The software requirements and simulations to be performed will
be presented in Chapter 4. Chapter 5 will include a presentation of the results found in
this research. Chapter 6 will finish with a discussion of the conclusions drawn from the

results, along with recommendations for future research.
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2. Development of Fundamental Concepts

2.1  Introduction

Three main concepts will be developed in this chapter: the Kalman filter, the state
and parameter estimator, and the stochastic controller. The Kalman filter development
will be thorough but basic. For the state and parameter estimator, Multiple Model
Adaptive Estimation (MMAE) algorithms will be implemented, and this chapter will
present different methods of implementing the MMAE. The stochastic controller will
utilize Linear-Quadratic-Gaussian (LLQG) techniques as part of the Multiple Model
Adaptive Controller (MMAC). As with the MMAE, various methods of implementing the
MMAC will be addressed.

In addition to these three main concepts, two additional items will be discussed.
First, algorithms for implementing the dithering techniques for enhanced parameter
identification will be developed. Second, a mathematical modeling section will be
presented in which physical and modal forms are developed in order to demonstrate the
modal reduction technique of producing a reduced-order filter model from a truth model.

The development presented in this chapter is independent of the particular system
of concern, e.g., a flexible space-structure. For this reason, the equations and algorithms
developed here can be applied to almost any situation which is constrained by the same

assumptions contained in this work.
2.2  Kalman Filter (Bayesian Estimation)

In order to utilize the simplest form of the Kalman filter, the system under study is

assumed adequately modeled by a continuous-time, stochastic linear differential equation
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driven by zero-mean white Gaussian noise. The sampled-data measurement mode] has
similar assumptions, i.e., lincar measurements disturbed by zero-mean white Gaussian
noise. Thus, the Kalman filter is based on the following linear stochastic differential

equation:
x() = F(t)x(¢) + B(H)u(?) + G()W(z) 2.1)

where X(t) is the n-dimensional state vector, wu(¢) is the r-dimensional deterministic
control input vector, and W(?) is the s-dimensional white Gaussian noise vector. F(¢) is
the n-by-n dimensional systen dynamics matrix, B(z) is the n-by-r dimensional
deterministic input matrix, and G(¢) is the n-by-s dimensional noise input matrix.

As indicated above, the driving noise has statistics of:

E{w(@®)}=0 2.2)
E{w(t)yw( )"} =Q)d(:-1) 2.3)

where Q(#) is an s-by-s dimensional, symmetric, positive semi-definite matrix and
indicates the strength of the dynamics driving noise; 8(2) is the Dirac delta function.

As with all stochastic linear differential equations, initial conditions must be

specified. These are in the form of X, and P,. With these two initial conditions known,

the entire corresponding Gaussian probability density function can be described. The

initial conditions are as follows:

E{x(t,)} =%, (2.4)

E{[x(to)-io][x(to)—io]T} =P, (2.5




Here, X, is the mean or “best guess” of the initial state vector. P, is the initial covariance

or indicator of the “spread” of the density function.

With the ultimate implementation of the Kalman filter on a digital computer, we
need a discretized set of Kalman filter equations. It is well known that, in general, it is
preferable to develop a discrete-time filter around an equivalent discrete-time system
model, rather than discretizing a continuous-time filter [19:261]. Thus, the discretized

system model is given as:
X(#)=®@;,t,_ )Xt )+ B, (t,_u@,_ )+ Gy (1_ )W, (2,_,) (2.6)
where <I>(t,.,t,._l) is the state transition matrix associated with F(¢), i.., the solution to:
&1t ) =F@O)®(1,t,_,) 2.7
with the initial condition:

D(1,_,.t,,)=1 (2.8)

Assuming time invariant F, the Laplace transform solution yields
Ot 1) = B, —1,.,) = 740 = {51 F]! }Ia 2.9)

i=tio)

If we then assume constant u over each sample period, B (t,._,) is solved by:

B,(t_)= Fb(t,., T)B(T)dt (2.10)




Similar to the continuous time case, the statistics of the dynamics driving noise are given
by:

E{w,(1_)} =0 @.11)
E{wd(ti-l IW, (tj )T} = Qq(ty )5(,'_1),' (2.12)
where 5(i_1) j is the Kronecker delta function. Q,(#) is given by:

Q) = | @, DEOUVCT (M@ (1, T)dt @.13)

bz
Measurements are obtained by the discrete-time measurement model:
Z(¢,) =H()x(t)+v(t,) (2.19)

where Z(;) is an m-dimensional discrete-time measurement vector. H(t;), is an m-by-n
dimensional measurement matrix and V(¢;), is an m-dimensional noise vector representing

the uncertainty in the measurement information. As with the dynamics driving noise,
W,(¢,_;) in Equation (2.6), this vector is modeled as white, Gaussian noise with statistics

given by:

E{v@)}=0 (2.15)
E{vie) v} = R@,)5, 2.16)

where R(;) is an m-by-m dimensional, positive definite, symmetric matrix and §; is the

Kronecker delta function. R(#;) being positive definite indicates that each measurement
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component is noise-corrupted and that no linear combination of these components is
noise-free.

One final assumption is that X(f,), W(¢)and V(¢;) are assumed independent and
thus uncorrelated with each other. The equivalence of independence and uncorrelatedness
comes from the joint Gaussian assumption [19:205].

Now that the discrete-time system is described, the propagation/update cycle of
the Kalman filter will be addressed. The propagation portion of this cycle consists of

propagating (moving ahead in time) the most recent state estimate information at time,
t’,, to time, #,”. The superscript “+” denotes the time just after a measurement update,

while the superscript “-” denotes the time just prior to a measurement update. Just after
the propagation comes a measurement update. Thus, this cycle can be described by the

following sequence:

(PRI A AT S S SUNNRN AN AN AT
The propagation equations are given by:
Xt ) =D, X))+ B, (¢, a(z_,) .17

P(t7) = ®(t,1,_ )Pt )P (1,,t,_,) +G,(2_)Q,(t_ )G, (¢t,) (2.18)

The following set of update equations are used to update the state estimate with the

information provided by the current measurement:

K(r;) = P(;)H" (1) H(:,)PEOHT (6) +R@)| (2.19)
R(e) = %067+ Ktz - H()X()] (2.20)
P ) =Pt )~ K(@,)H(,)P(t,7) (2.21)
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where z; is the measurement to be incorporated at time ?; (a specific realization of z(z;)),

and K(z,) is the Kalman filter gain matrix. The residual equation is given by:

r(s,) =z, — H(,)X() (2.22)

where r(t;) is termed the residual and is simply the bracketed quantity in Equation (2.20)

[10:217-218]. The residual term is singled out because of its special importance in the
system analysis and the MMAE to follow in the next section. The residual is seen to be
the difference between the current measurement and the filter's best “‘guess” of what that
measurement should be. This difference “guides” the filter in the correct direction (+ or -)
for updating the state estimate. The magnitude of the update is controlled by the gain
matrix. The filter anticipates that the residual will be Gaussian, of mean zero and of

covariance

A(t)=H(@)P(@ )R (1) +R(2) (2.23)

which is inherently computed by the filter in the gain calculation of Equation (2.19). Since
X(t*) is formed from X(z;”) in Equation (2.20), the state estimate always incorporates
knowledge (information) of previous measurements. This is the underlying idea behind
recursive Bayesian estimation.

With the Kalman filter system of equations presented, we will discuss some further
simplifying assumptions which will minimize the computational work involved with
implementing such a system. The following simplifications revolve around the current
assumptions of a time-invariant system with stationary noise processes. With this type of
system the filter is known to have a transient followed by a steady state response in P and

K [19:224]. If the transient period is relatively short, relative to the total time of interest,




then the steady state values may be used (if performance degradation is sufficiently small).

Thus, with the time-invariant assumption and a fixed sampie period, P~, P* and K may
be precomputed once for all time, as can B, and relieve a considerable computational

burden. With the addition of the stationary noise assumption, Q, can be precomputed

once for all time as well. For the system under consideration, another valid assumption is
for R to be constant as well.
With the simplifying assumptions in place, the last step in the Kalman filter system

development is that of “tuning”. This process involves adjusting or “tuning” the values for

io, R and Q. The development of these and the other system model matrices (choice of

state variables in X; F, @, B, u, G, and H) will be presented in Chapter 3. The actual

tuning process will be presented in Chapter 4.

2.3 MMAE

The basic understanding of the Multiple Model Adaptive Estimator (MMAE) was
discussed in Chapter 1. This section will expand on this idea, starting with the uncertain
parameter problem and the Bayssian formulation of the MMAE. This is followed by a
discussion on underlying problems with the basic or raw form of the Bayesian MMAE.
This section is concluded with a discussion on proposed enhancements to address these

problems.

2.3.1 Bayesian MMAE
Uncertainties are already a given with a stochastic system (dynamics and
measurement noise), but these noises are white stationary processes. The unknown or

uncertain parameter comes into play when forming a system matrix (@ in our case).

Note, that in general, uncertain parameters can affect B;,H,Q, and/or R as well. The

Kalman filter for a particular system is only as accurate as the system matrices which make
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up the filter. If there exist some uncertainty in the system at hand (damping ratio and
undamped natural frequency of various structural bending modes in our case), one method
of handling this is the MMAE.

To understand the Bayesian formulation of the MMAE, consider the following.
Let @ be the random vector composed of the uncertain parameters. In this initial
discussion, & will be considered a time-invariant random vector. As presented in Chapter
1, the parameter space will be comprised of a set of K parameter vector values,
{a,.a,,...a,,...a, }. This discretized space is preferred rather than a continuous space for
obvious dimensionality problems; later it will be seen to allow an MMAE implementation
with a finite number, rather than an infinite number, of elemental Kalman filters. (The

actual parameter space discretization will be developed in Chapter 3.) Now consider a
joint density function of X(z;) and @, conditioned on measurements Z(z;). Here, Z(t;) is
the measurement history through time f;,, made up of the components

(1), z(,), ..., Z(t;). Maybeck [20:76,129] states this is the logical choice for a

Bayesian formulation and is given by:

f;((:,-),aIZ(r,.)(g’al Z) = f;((r,-)la.l(t;)(g o, Z, )fanzu,-)((xl Z) (2.24)
Note that Bayes' rule [19:81] is applied to obtain the equality. TLis form of the density
function is useful since the two terms on the right of Equation (2.24) are readily known.
The first term on the right is the Gaussian density defined by the Kalman filter based on
the assumption that @ assumes the value o, with mean X(z,") and covariance P(¢;*)
[20:129]. The second density function in Equation (2.24) is formed by considering the

probability of @ taking on the value o at time ¢;. The density function is then described

by [20:130]:
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K
fuz(;,) (a, Zi) = Z Py (t,' )8((! —a, ) (2.25)

k=1

Then, for any time ¢;, the conditional hypothesis probability is recursively defined as

[20:131]):
p.(t)=prob{a=2a,12¢:)=Z.}
N/ z(ti)ll.Z(t,-_l)(ziI a,Z._,)p ()
- K

Zfz(z,-xa.zu,-_,)(zi' aj, Z.) p; (&)

=

(2.26)

where each measurement conditional density is evaluated as [20:132]:

Fuoomzay @il Zin) = mexp[-1n A (R @)]  (227)

1
Q2ry™"*|A, ()|

where 1, (7;) and A, (¢;) are computed in the kth Kalman filter (based on the assumption

that a=a,) as:
5(t)=z(t;)~H,(t,)X,(¢7) (2.28)

and

A ) =H,@)P()H; (1) +R, (1) (2.29)
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From this Bayesian formulation we will have a state estimate (conditional mean) and
covariance, both of which are conditioned on the past measurement history. The

conditional mean is formed by [20:131]:

%(¢*)= E{x()lZ(t)=2,}
- [k
= I-.. §[2 f;((t,»)ll.l(r,) (glak ’ zi )Pk (t,') ]d§

= EK: X, (17)p (1) (2.30)
k=1

where X, (2,*) is produced by the kth Kalman filter based on the parameter a,. Note the
difference between X(z,*) and X,(z,"). X(¢;") is merely the probabilistically weighted
average of each of the Kalman filter state estimates. Refer back to Figure 1-1 for a

graphical depiction of this process, also known as the multiple model filtering process
[20:131].

If it is desired to obtain the conditional covariance of X(z;), it can be found from

[20:131]:

P(t)= E{[x(t,.)— &(t, [ x(t)— ()] 12y = zi}
=["[e-ze]E-%eN] £, @IZ)dg

X(#,0Z(4)

=ﬁp,(r,.){j_““[é—i(r:)][&—ﬁ(r,.*)]Tf (§lapzi)d§}

x(s,)im,2(1,)

= ,,2’:' p(t; ){P,, (t,-+)+[ik(t‘,+ )— i(tf+)][ik t*)- i(t‘+)]T} 231)
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where P, (1) is the covariance of each Kalman filter’s state estimate based on the
parameter a,, as explicitly precomputable in the kth Kalman filter. Note here that P(z;*)
cannot be precomputed since it is directly tied to knowledge of the measurement history.
In order to evaluate the performance of the multiple model parameter estimation, it
will be useful to calculate the conditional mean and covariance of the parameter. These

are given by [20:132-133}:

a¢r)=E{a()2(t)=2}= F} foa @)t
o0 K

= L"‘[Z p.(t)d(0—a, )}/a
k=l

K
=Y a,p,(1) 232
k=1

and:
P.(t)= E{[a —a()[a—4a()[l 12, = z,.}

= Z[ak —a()][a, —a(,)] P (1) (2.33)

2.3.2 Enhancements to Bayesian Estimation

The preceding section gave the Bayesian formulation in multiple model form for
the problem of state estimation (and parameter estimation) in the face of uncertain
parameters. This section will discuss alternate formulations of the multiple model’s state
estimate and other enhancements to include in the multiple model algorithm.

The Bayesian setup of the multiple model adaptive estimation algorithm in its pure
form has two potential drawbacks. For each, there exist modifications or enhancements to

overcome these drawbacks. In order to discuss the first drawback, consider the
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conditional probability density function in Equation (2.27). Normally the density function
with the largest magnitude is the one which contains the smallest residual term, r,. This in
turn produces the highest probability for the kth Kalman filter in Equation (2.26). This is
how the algorithm should work, since the filter with the smallest residual is likely to be
based on a model that is closest to the truth model. However, if the situation arises in

which each r,tT A"l‘,t is of the same relative magnitude (which would be desired to yield

equal probabilities for each elemental Kalman filter), then the magnitude of the conditional

density function will be driven by the L term in Equation (2.27). In this case the filter

A,
with the smallest lA,‘l will produce the largest density value and thus the largest
probability. This is certainly not the criterion upon which to base the probabilistically
weighted state estimate. To overcome this possible shortcoming of the pure Bayesian
formulation, an alternative or enhancement is available and is discussed below.

For this enhancement we will assume that the residuals are Gaussian with an
identity covariance matrix. This implies that the residuals will follow a “maximally
noncommittal residual distribution” [10:26]. The enhancement is termed Maximum
Entropy with Identity Covariance (ME/). With this method the A, term in the
conditional density function of Equation (2.27) is replaced with the identity matrix, I.

The resulting density function is given by:
1
fz(:,)p,zu,_,) (zi lak ’ Zi-l )= W exp[- ‘;‘ rl;r (¢ )rk (% )] (2.34)

Note that, without this modification, we assume the residuals are Gaussian with

covariance A, and that “a Gaussian distribution is the maximum entropy distribution”

[29:32, 10:24]). Thus, the method of using the conditional density function with
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covariance A, (Equation 2.27) is termed Maximum Entropy with Covariance A,
(ME/A).

A second problem can occur if a probability, p, (f;), is ever calculated to be zero.
Because of the iterative nature of the probability calculation in Equation (2.26), if p,(¢;)
ever becomes zero it will remain at zero for all time thereafter. This condition is often
termed “lock-out.” To prevent such a condition, an ad hoc technique of “lower bounding”

Pi(t;) is used [20:135, 17]. This enhancement of setting a lower bound, p,,.,, on p,(t;)

prevents the probability from ever becoming zero. The lower bound is set sufficiently low

$0 as to not bias the computation, and at each sample time, ¢;, after each probability is

K
computed with Equation (2.26), each p,(f;) is rescaled such that 2 p(t)=1
k=1

In addition to the enhancements presented above, there is another method of
computing the state and parameter estimate. This method is termed Maximum A
Posteriori (MAP) and assumes the filter with the highest associated probability will
provide the best state estimate. This method can be used with or without the ME/I

technique of computing the probability density function.

2.4  Moving-Bank MMAE Development

The moving-bank concept was introduced in Chapter 1 and is an enhancement to
fixed-bank (full-bank) MMAE. In order for the MMAE to be robust, the parameter space
must be “large”, but this, of course, can create a burden for the microprocessor if the
discrete point values are finely distributed throughout the space. To alleviate this burden,
a subset of J filters is used at any given time (with J < K). Then, for the MMAE to be
effective, the subset of filters must “move” through the parameter space (to keep up with

changes in true parameter value, a). In order for the move to work properly, the bank
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will also have to be expanded and contracted periodically. Additionally, as the bank
moves through the parameter space, new clemental Kalman filters will have to be
initialized. In this section, techniques for moving, expanding and contracting the bank, as
well as initializing filters, will be discussed.

2.4.1 Moving the Bank

As stated previously, the moving-bank MMAE is the J subset of filters which
surround the most likely correct filter. When parameter variations take place, the bank
will have to move to keep itself centered over the correct filter. This moving-bank
concept is depicted in Figure 1-6. In order to accomplish the bank move, three methods
(or logics) are presented. They are (1) Residual Monitoring, (2) Parameter Position

Estimate Monitoring, and (3) Probability Monitoring.

2.4.1.1 Residual Monitoring
The residual monitoring method makes use of the likelihood quotient, L;(%;),

which is defined as:
L (1) =17 (1)A;(6) 75, (5) (2.35)

Note that the likelihood quotient has the same quadratic form as the exponential term in
Equation (2.27). Thus at each sample time, L;(¢;) is computed for each of the J filters.
Each of the J likelihood quotient values is compared to a set threshold. Computed values
larger than the threshold are an indication the bank needs to be moved (in the direction of
the smaller values). If all Lj (1,) values are greater than a set threshold, then the bank can
be moved in the direction of the smallest value, or the bank can be expanded (to be
explained shortly). The direction of movement (determined from Lj (;) with the smallest

value) should correspond to the parameter a; being closest to the true parameter. Since
P j
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this method relies on the assumption that the most likely true filter location is the one
corresponding to the smallest current residual or in this case the smallest current likelihood
quotient value, then it is inherently troubled with possible single large residual values
giving an incorrect indication of the move direction. For this reason, the move decision
threshold must be set high enough so the bank will not move in an erratic fashion
[22:1876].

2.4.1.2 Parameter Position Estimate Monitoring

This method uses the parameter estimate itself to keep the moving-bank centered
over the most likely correct filter model. This is accomplished by comparing the current
parameter estimate from Equation (2.32) to the bank’s center. If the difference is greater
than a set threshold, then the bank can be moved in the appropriate direction so as to put
its center as close as possible to the current parameter estimate.

In comparing this method with the previous one, it is seen that using the parameter
position estimate is a more direct interpretation of the information indicating the true
location of the uncertain parameter. It is also seen that this method utilizes the entire past
measurement history, whereas the Residual Monitoring method utilizes only the current
measurement. Thus, the Parameter Position Estimate Monitoring method does not suffer

from possible erratic behavior due to single large residual values.

2.4.1.3 Probability Monitoring

This method combines properties of the previous two methods and attempts to
center the bank over the most likely filter model by utilizing the conditional probabilities
determined from Equation (2.26). The p;(t;) with the highest value (greater than a set
threshold) is used to determine the bank’s center, and the bank will move in the direction

of the filter with the highest computed probability. Thus, (as with Residual Monitoring)




this method uses residual information, except that here the entire measurement history is
utilized as well. Then, (as with Position Monitoring) this method is not susceptible to

erratic behavior due to single large residual values.

2.4.2 Expanding the Bank

When parameter variations are “small”, then the set of filters can move as a finely
discretized bank. If, however, the true parameter makes a large jump in value in the
parameter space, the bank may need to be expanded to a coarse discretization in order to
encompass the true parameter within the bank. The decision logic of whether or not to

expand the bank is based on the likelihood quotient Equation (2.35) (the other methods
rely on &(7;) and p;(t;), both of which are confined to the nearest neighbors to the

current bank center, using fine discretization). As with Residual Monitoring, if all L;(¢;)

values exceed a set threshold, the bank is expanded. This too can be prone to erratic
expansions due to single large residual values. The threshold must be determined through
trial and error for a given system.

In addition, the bank can be initially expanded in an effort to approximate the
location of the true parameter within the entire parameter space. Once this acquisition
cycle yields an estimate, a, the bank can be contracted to fine discretization, centered on
a. Maybeck and Hentz [5:26, 22:92] stated that an initial coarse discretization may

provide a better initial transient in parameter estimation than an initial fine discretization.

2.4.3 Contracting the Bank
After the bank has been expanded, it will need to be contracted once an accurate
estimate of the uncertain parameter is obtained. The decision to contract the bank is

generally controlled by a method called the Parameter Estimation Error Covariance

Monitoring technique. The covariance of the uncertain parameter estimate, P;(z,), is
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given by Equation (2.33). Similar to previous decision making methods, when some
scalar length variable associated with this covariance falls below a set threshold, the
coarsely discretized bank is contracted to a finely discretized bank. Also, as with previous
methods, the threshold must not be set too “high” or too “low.” Hentz [5:69] found that
too high a setting causes the bank to contract prematurely (without an adequate parameter
estimate), and too low a setting delays the bank from contracting at the proper time.

Since P, (#;) is not in general a scalar, in the past there have different methods for

utilizing this covariance information. Hentz used either the largest diagonal element
[5:64] or the norm of P;(#;) [22:92], whereas Kamnick proposed another method involving

the probability of each side of the bank [7:28-29]. The probability of each side of the bank
is given by

Zm‘ fz(‘l)h-z(!..,)(zl' I aj ’ zi—l)
24 :ide:f;(‘i)i'-z(‘i—i)(zi | aj’ zi—l)

Pia. (8) = (2.36)

With this method, if the probability of a side falls below a given threshold, that side is
contracted “inward” toward the parameter estimate. However, if probability of a side
goes above another threshold, that side is left alone, and the other three sides are
contracted inward. The third case for this method is, if the sum of all four sides are below
a set threshold, then they are all contracted inward. Thus, contracting the bank can be

performed based on different methods just as with the bank move logic.

2.4.4 Initialization of New Elemental filters
An initialization process must take place when the bank is moved, expanded or

contracted, or first started up. There are three steps to this process. First, the Kalman
filter matrices, ®,, B,,, G, H,, A,, D, and K,, and the controller matrix, G,
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(for the kth elemental filter and controller), must be read in from memory for the filters
that now comprise the bank. Each of these matrices is constant for each particular filter

(based on a,) and thus can be stored and need not be computed on-line. Second, each
filter which is brought into use must have its state estimate, X, (¢,), initialized to the
current state output from the MMAE, X(¢;). Third, the filter probability weights, p, (z,),
must be initialized. There are different methods used to initialize the probability weights,
and these are discussed below.

When the filters are first initialized, the probability weights are equally divided
among the J filters (p;(¢,) =1/ J for all j). This is justified since at 7 there is no a priori
information about the probabilities. This will be the same case when the bank is expanded
or contracted with the same justification. However, when the bank is moved, a more
appropriate probability weight distribution is warranted for the newly declared filters.
Instead of giving them all equal weighting (as in the initialization), the new filters are given
an equal distribution of the deactivated probabilities (the total probability of the filters that
are taken off-line by making the move). The filters that are preserved during the move
retain their previously computed probabilities. Other, more complicated, methods of
distributing the probabilities have been proposed and researched [17:27-29], but the
method of equal distribution was found to be just as effective and will therefore be used in

this research.

2.5  Stochastic Controller Development

Now that the estimator portion of the system is developed, we will move on to the
controller development. As indicated in Chapter 1, an LQG stochastic controller is to be
implemented. For the most general case, the cost function to be minimized is defined as
[21:73]:
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& (X)X SE)Txe) r
where:

e J = scalar cost to be minimized

¢ X(#;) = n-dimensional state vector

¢ X(¢;) = n x n-dimensional state weighting matrix

e X, = n x n-dimensional final state weighting matrix

u(t;) = r-dimensional control input vector

U(¢;) = r x r-dimensional control weighting matrix
¢ S(t;) = n x r-dimensional cross-weighting matrix
e ¢, = last time a control is applied (held constant to next sample period)

® ty,; = final ime

Here, X(#;) and X, are real, symmetric and positive semi-definite; U(z;) is real,
symmetric and positive definite. S(f;) is chosen such that [X(z,) - S(£,)U™(1,)8" ()] is
positive semi-definite and such that the augmented matrix in Equation (2.37) is positive
semi-definite [21:73]). Values in X(#;) and X, determine the relative penalty for not
controlling the states to zero, while values in U(¢;) determine the relative amount of
penalty for applying power to the actuators to accomplish the controlling action. For
diagonal X(z;) and X, the larger the values in these matrices, the more importance is
placed on keeping particular states at zero. Similarly, for diagonal U(¢;), the larger the
values, the more importance is placed on keeping control deviations small on particular
actuators. The values that are placed in these weighting matrices come from

experimentation and observation of the system of interest. For some desired performance,

these matrices must be tuned in the same fashion as Q,, R and P, in the Kalman filter.
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This correspondence between estimator and controller is part of a “duality” relationship
and will be discussed further shortly {21:11].
With the quadratic cost defined above, the controller to minimize that cost is given
by:
u'(t)=-G. (t)X(") (2.38)

which is obtained using certainty equivalence with the deterministic case [21:70].
The controller gain, G_'(¢,), is determined by solving the backward running Riccati

recursion [21:73]:

G, (1) = [U() +ByT (1)K, (1,)B4 ()] [ByT (4K (11, )@(1,1,5) + ST ()] (2:39)

K. ()= X(@#)+ o7 (K, (2,,))P (1)

T (2.40)
T T .
—[Bd (1)K (8,4))D(141, 1) +87 (4, )] G. (1)
solved backwards from the terminal condition
K.(tya) =X, (2.41)
For a time-invariant system the control law becomes
u'(t)=-G,'%(t*) (2.42)

G can now be solved off-line as:
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G, =[U+B,’KB,] [B,’K.®+S5] (2.43)
where Kc is the solution to the steady state Riccati equation:
K. =X+®"K.0-[B,’K.®+S"| [U+B,"K,B,] [B, K ®+ST] (244

The time-invariant condition is welcomed for high dimensional systems (for decreased
computational load). This condition is physically motivated when the initial Kalman filter
transients and the final controller gain transients are both negligible. This will be the case
if the two transient time intervals are small compared to the time interval that control is
applied.

A note is made here concerning the “duality” relationship between the Kalman
filter Riccati recursion Equations (2.18), (2.19) and (2.21), and the LQG controller Riccati
recursion Equations (2.39) and (2.40). This duality relationship will be shown explicitly
as follows. First, we substitute Equations (2.19) and (2.21) into Equation (2.18) (note the

short notation used for compactness):

P = O, @' - O H'[HP_H" +R] HPL®" +GQ,G," (249

3

Then we substitute Equation (2.39) into Equation (2.40).

Kci =X+ <I)TI(cH-I(I> _[Bd’rKcm’l(I> + ST]T
N (2.46)
. [U +B,'K Bd] [BdTK @+ ST]

Ci+l Ci+l
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Now, by comparing Equations (2.45) and (2.46), the following variable relationships can
be made:
X & G,Q,G]
b’
B, oH'
UeR

With the corresponding relationships just noted, it is seen that the Kalman filter Riccati
recursion is of the exact same form as the LQG Riccati recursion. This duality
relationship is worth noting because, as a result of the two Riccati equations being of the
same form, they can both be solved for their steady state solutions by the same routine.
One last simplification is made concerning the cross weighting matrix, S, in the
quadratic cost function, Equation (2.37). This term has been shown in previous research

[11] to have negligible impact on performance and is thus neglected.

26 MMAC

In parallel with the Kalman filter/MMAE development is the LQG control/Multiple
Model Adaptive Control (MMAC) development. Now that the control equations have
been presented, the methods by which the control is implemented are presented. Just as
there are several methods of implementing the state and parameter estimation algorithms,
there are various methods of implementing the controller. The following six methods are
presented in this section: (1) MMAC Control, (2) “Modified” MMAC Control, (3)
MMAC with MAP Control, (4) Single Fixed-Gain Control, (5) Single Changeable-Gain
Control, and (6) “Modified” Single Changeable-Gain Control.
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2.6.1 MMAC Control

The basic structure of the MMAC is shown in Figure 1-2. This is the basis from
which the other methods are derived. With the basic MMAC algorithm, an elemental
controller is cascaded with each elemental Kalman filter. This structure parallels that of
the MMAE in that the output of each elemental controller is probabilistically weighted and

summed to provide the optimal control, i.e.,

K
u‘(ti) = Zuk'(t.' )Pk (t,') (2.47)
k=1
where,
llk.(t‘.) = —Ec‘(ak )ik (t,'+) (2.48)

Note that each elemental controller gain is based on the corresponding assumed parameter

value, a,, for that filter model. This form of Multiple Model Adaptive Control is a natural

extension of the Bayesian Multiple Model Adaptive Estimator.

2.6.2 “Modified” MMAC Control

The “modification” in this method is an extension to the ad hoc technique of lower

bounding the probabilities, p,(¢;), presented in Section 2.3.2. With this method, after

each of the K control vectors are formed, the associated probabilities are compared to a

set threshold, at a numerical value higher than the lower bound of that previous section. If

any p,(t;) is found to be below this threshold, the corresponding kth control vector,
u,(¢;), is discounted and not used to form the probabilistically weighted control vector.

The probabilities are rescaled so their sum is one, and the remaining u,(z;) are used to

form the control vector per Equation (2.47).
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The use of the lower bounds described in Section 2.3.2 is still important to prevent
the “lock-out” phenomenon associated with a particular p, (¢;) value being computed as

essentially zero. However, if that p,(t;) is artificially lower bounded, the control
computed via Equation (2.47) will include a nonzero weighting on the corresponding
inappropriate control, u,(¢;). In this particular problem, it is readily possible that putting
any nonzero weight on that u, (¢;) could drastically degrade performance and could even

cause closed-loop instability. Thus, the lower bounding method is incorporated to

maintain viable p, (¢;) computations, but any W, (¢;) associated with a p, (¢;) that has been

artificially bounded is deemed to be unsuitable for use in control generation. Using a

threshold somewhat higher than the lower bound value allows other u, (¢;)’s that are poor

candidate controls (as indicated by their low p,(z;) values) also to be eliminated from the

control calculation.

2.6.3 MMAC with MAP Control

The method corresponds directly with the MAP method of state estimation
(Section 2.3.2); the control is based solely on the elemental LQG controller with the
highest associated probability.

2.6.4 Single Fixed-Gain Control

This method utilizes the fact that full-state feedback controllers are inherently
robust and determines the control input based on a single nominal parameter value and a
single state estimate as output from the MMAE [5:39-40, 22:93]. Figure 2-1 illustrates

this concept, and the control law is given as:
u'(,)=-G, (a,, )%(@*") (2.49)

Hentz noted that determining a good value for a,,, may not be a trivial task [5:40].
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Figure 2-1. Single Fixed-Gain Controller

2.6.5 Single Changeable-Gain Control

This method is similar to the previous in that it, too, uses the single state estimate
as output from the MMAE. However, the controller gain is computed based on the
parameter estimate as output from the MMAE instead of a single nominal parameter

value. This idea is illustrated in Figure 2-2, and the control law is given by:
u'(s) =—G, [AcylR(z*) (2.50)

This requires that gain values be stored for each of the K parameters. Then, ﬁc'[ﬁ(t,-)] is

computed by interpolation from the stored values[5:37-38].
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Figure 2-2. Single Changeable-Gain Controller

2.6.6 “Modified” Single Changeable-Gain Control
This method is similar to the previous method in that it also uses the parameter
estimate from the MMAE, but the state estimate comes from a separate Kalman filter (not

part of the moving bank of filters). This controller structure is illustrated in Figure 2-3,
and the control law is defined the same as in the previous method with X(#,") from the

MMAE replaced by X(;") from the separate Kalman filter. This form of control can be
useful if ﬁ(t,-) is between two discrete parameter values for which elemental filters are

designed. A single filter based on a(t;) might provide substantially better performance

than either of those two elemental filters (or any linear combination of those filters); this
form of algorithm allows a coarser discretization of the parameter space [18]. This
method of control also reduces the possibility of control inputs based on an
underestimated undamped natural frequency, which previous research has shown to cause
instabilities in this type of system [5, 22:95, 30].
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Figure 2-3. Modified Single Changeable-Gain Controller

2.7  Dithering Techniques

As indicated in Chapter 1, this research will apply dithering techniques in order to
enhance parameter identification. Within the area of dithering, there are two basic
methods: purposeful excitation designed for enhancement of parameter identification and
purposeful commands to accomplish slewing of the space structure. Both types of
commands are referred to as “open loop” control, since each are precomputable functions
of time and not of states or measurements. If an appropriate excitation frequency is used,
the system should be excited enough to enhance parameter identification. Likewise,
giving the structure a slewing motion will cause a certain amount of natural system
excitation to occur, which may also enhance parameter identification.

This section will discuss the different types of purposeful excitation dithering to be
used in this research. The rigid-body states and how they are incorporated into the
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structural and control matrices, F and B, for use with purposeful (slew) commands, will
be presented in Chapter 3.

2.7.1 Sinusoidal Dither

Three sinusoidal dither wave forms will be considered in this research. They are:
(1) sine wave, (2) swept frequency sine wave, and (3) square wave. The sine wave would
be a logical choice if the system’s identification-enhancing frequency were known a
priori. This optimum frequency is one which (when used to excite the system) should
allow the best parameter identification to be made. If, however, this optimum frequency is
not known, a method of using a sine wave while slowly changing the frequency across a
particular range (swept frequency sine wave) could be employed [18]. This method would
allow the system’s identification-enhancing frequency to *“show itself’, and the dither
could then be switched to a sine wave at that particular frequency (or be swept in some
small frequency band about that frequency).

An alternative to using a pure sine wave dither is to use a square wave. With a
square wave, not only is the fundamental frequency of the wave induced into the system,
but additional harmonics (high frequency content) are also induced [18). These additional
harmonics may help parameter identification when the optimal dither frequency is not
known.

When implementing sinusoidal type signals in a digital computer simulation, certain

limitations exist and are discussed in the next section.

2.7.2 Dither Frequency

In a discrete-time system which is propagated forward at fixed intervals,
t,—t,_, = At, Shannon’s sampling theorem will apply when computing an input dither
signal in the form of a sin(O)t(t,. )) function. In general, Shannon’s sampling theorem
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requires that the sampling rate be at least twice the highest frequency of interest in the
signal being sampled. This limit is also known as the Nyquist rate [27: 81). For our
application of computing a dither signal in a simulation which contains a particular given
sampling rate, the limitation is placed on the frequency of the dither signal which can be
produced. Thus, the maximum frequency in a sinusoid function that can be correctly

produced in a fixed sampling rate simulation is:

1
— 2.51
F<3sx (2.51)

where f is highest frequency or Nyquist rate (in Hertz) with which the sin((ot(t,- ))
computation will produce a useful result. (Note that @ = 27tf, if ® is in rad/sec.) Thus,
computing sin(mt(t,. )) with the limitation set in Equation (2.51) is analogous to sampling
some continuous signal of frequency, f, with the Nyquist sampling rate requirement
f,>2f, where f, is the sampling rate. For the system used in this research
At = 0.01sec, and therefore, f <50Hz or @ <314.16rad/ sec. The importance of this

maximum frequency will be seen in Chapter 4 when the actual dither frequencies are
chosen.

One additional note concerns the actual application and computation of the sine

wave and square wave dither inputs. Dither is applied via the control variable, u(¢;), by:

u(t;) = Asin(t;) (sine wave) (2.52)

u(t)=A sgn(sin(mt,- )) (square wave) (2.53)

where A is the amplitude of the wave, and the signum function “sgn” merely returns a +1

or a -1, depending on the polarity of the sine wave.
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2.7.3 Wide Band Noise Dither

An alternative to using a sinusoid type of dither signal is to use wide band noise.
With wide band noise, a shaping filter is designed for the purpose of providing a signal
that covers a specified range of frequencies at a specified strength or power spectral
density (PSD) value (over all inclusive frequencies). With such a shaping filter, the dither
input to the system can provide a very rich frequency content, since a broad range of
frequencies is used.

For this research a simple second-order shaping filter with two real poles will be
used. Figure 2-4 shows the transfer function and equivalent block diagram design for this
shaping filter. The PSD plot which represents the output of this transfer function and
block diagram is shown as Figure 2-5. The corresponding state-space equations are as

follows:

[M®]_[-4 0 [x@®], [w) 2:54)
[X:0] L1 -£1x%0 0 '
n(t) = KX, (1) = K(x,(6) - £,X,(2)) (2.55)

where W is zero mean, unity strength white noise, and K is an adjustable gain. f; and f,

are the lower and upper frequency ranges of interest. Equation (2.54) can be written as

the continuous-time matrix differential equation:

X(1) =Fx(t)+wW(t) (2.56)
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For discrete-time implementation, Equation (2.56) is written as:

X(1,) = O, — 1, )X(t,_ )+ W, (1)) @.57)

where @(¢; —¢,_,) is the state transition matrix associated with F and the statistics for W,

can be computed according to Equations (2.11), (2.12) and (2.13). For constant sampling
period (¢, —¢,_, = const = Ar), the state transition matrix is simply:

The entire gain of the output of the shaping filter is controlled by K in Equation (2.55)
and will be adjusted by trial and error.

2.8 Mathematical Modeling Methods

This section will present the two coordinate forms, physical and modal. The
transformation from the physical form to the more desirable modal form will also be
presented, along with a technique for producing a reduced-order model based on the
modal coordinate form.

Many systems (including the one with this research) contain a high-dimension truth
model. This is very useful in computer simulations in order to represent the “real” world
accurately. However, many on-line applications cannot perform with such high state

dimensions. Thus, a reduced-order model as the basis of filter and controller designs is
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necessary which will satisfy the on-line computer limitations and which will also yield

satisfactory performance.

2.7.1 Physical Coordinate Form
The governing second-order differential equation describing the flexible structure

vibrations is given by [7:39, 13:4, 32}

Mi(t) + Cr() + Kr(t) = F,(u,1) + F,(1) (2.59)
where:
® I(t) = n-dimensional vector representing the structure's physical position
¢ M = n-by-n constant mass matrix
e C = n-by-n constant damping matrix
¢ K = n-by-n constant stiffness matrix
¢ F,(t) = r-dimensional deterministic control inputs

¢ F,(t) = r-dimensional disturbances and unmodeled control inputs

With the assumptions that the deterministic control and noises enter the system linearly,
and that the external disturbances, F,(¢), can be modeled as white Gaussian noises, then

Equation (2.59) becomes [7:40, 31:4]:

Mi(2) + Cr(z) + Kr(z) = —bu(t) — gw(z) (2.60)
where:
¢ u(t) = r-dimensional vector of actuator inputs
¢ b = n-by-r control input matrix identifying position of actuators and relationship
between actuators and controlled variables

e W(t) = s-dimensional vector representing the dynamics driving noise
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e g = n-by-s noise input matrix identifying position of input disturbances and

relationship between the dynamics driving noise and the controlled variables

Equation (2.60) can be written as the stochastic differential equation in state-space form

[7:40, 13:4]:
X(1) = Fx(t) +Bu(t) + GW(?) (2.61)

Note that this equation is of the same form as the system described by Equation (2.1) in
Section 2.2 with the exception of constant matrices. = The common state vector

representation is given as:

X(t)= [r(t)] (2.62)

and the form of the constant system matrices is [2:3-20, 7:41]:

_M—l _mM-! a
F=[ I Cnxn M Knan (263)
nxn ole’l 2nx2n
-M™,,, ]
B= [ 0 il (2.64)
nxr A2nxr
Mo ]
G =l: Euxs (2.65)
0""3 J2nxs
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s»'or the state vector described in Equation (2.62), the discrete-time measurement

model of position and velocity is given by [2:3-20, 7:41]:

H 0
Z(t‘.)=“: 0 H ] x(t,.)}+v(t,.) (2.66)
Pimx2n

where:

m = number of measurements

V(t;) = m-dimensional measurement uncertainty modeled as a discrete-time

white Gaussian noise of covariance R(?;)

H , = (m/2)-by-n position measurement matrix in physical coordinates

H, = (m/2)-by-n velocity measurement matrix in physical coordinates

Note that, for simplicity, an equal number of position and velocity measurements is
assumed. The actual measurement matrix may vary, depending on available
measurements, and does not affect the structure of the system matrices of Equations
(2.63) through (2.65).

From this development it is seen that the physical coordinate form produces highly
coupled system equations. With this coupled format, important system characteristics may
not be easily identified, and thus, a more desirable form is needed. The next section will

discuss the transformation from physical to modal coordinate form.

2.7.2 Modal Coordinate Form
Transforming the equations to modal form decouples the modes and makes the
identification process simpler. For the purposes of this research, the damping matrix, C,

is assumed to be a linear combination of the mass and stiffness matrices [13:4]:
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C=oM+BK (2.67)

However, the calculation of 0. and B is not necessary when transforming to the modal
coordinate form, as will be seen shortly. Given the new modal coordinate vector, F, the

transformation from physical form to modal form is described by [13:5]:
r=Tt (2.68)

where T is a n-by-n transformation matrix determined from the system eigenvectors by
solving [13:5, 32}
’MT =KT (2.69)

where the values for ® that satisfy this equation are referred to as the natural or modal
frequencies.
Now, using the transformation Equation (2.68) to operate on the original ~ystem

Equation (2.61), the resulting state space equation is given by [13:5]:
(1) = Fx(2) + Bu(r) + Gw(r) (2.70)

where the transformed state vector from Equation (2.62) is now defined as [13:5}:

X(t) = [':(t)} (2.71)
r(t) 2nx1
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and the transformed matrices from Equation (2.61) as applied to Equation (2.60) are
defined as [2:3-22, 13:5]:

_-Ipg-t _ar-1pg-1
e T"MCr -T"M KT 2.72)
I 0 2nx2n
e ingety ]
g=| T M™b (2.73)
L 0 d2nxr
[ -Ing-lg ]
&=| T Me (2.74)
L 0 Anxs

Since the modal form provides for independent equations, the resulting modal
vectors, i.e., eigenvectors of F, are orthogonal. This fact plus the following relationships

[7:44, 32:1769]:

~-T"'M™'CT =[-2¢,»;] (2.75)
-T"'MKT =[-w}] (2.76)

allows the dynamics matrix to be written as follows:

e |:[—2Ci(0i] [“0):'2]:| .77
I 0 2nx2n

where the matrix is now block diagonal in terms of the undamped natural frequency and
the damping ratio of the i-th mode. In Equations (2.75) through (2.77), the notation

“[a;]” denotes a diagonal matrix with a; through a, running down the diagonal. Note that,
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because of the relationship in Equation (2.75), the damping matrix C does not need to be
determined and thus the 0. and B in Equation (2.67) need not be known. The transformed

measurement equation from Equation (2.66) may be written as [2:3-22]:

. HT 0 «
z(m:{[ 0 HPT]mxznx(t,.)}+v(t,.) (2.78)

From this development it can be seen that the modal coordinate form does provide
a decoupled set of equations from which to work. This decoupled form (modal form)
allows direct insight into the physical system parameters (natural frequency and damping
ratio), unlike with the physical coordinate form.

The next section presents the development of the Modal Reduction Technique as
presented by Kokotovic [9] and Gustafson [2]. There are many other methods of
providing a reduced-order model from a truth model, but Gustafson obtained the best

results using this method [2:5-30], and so this technique will be pursued in this research.

2.7.3 Modal Reduction Technique

This state reduction technique will eliminate the higher frequency bending modes
of the system. The concept behind forming a reduced-order model by eliminating these
higher frequency modes (states) comes from the assumption that the higher frequency
modes will become quiescent in a negligibly small amount of time. This assumption comes
from the physical shape of the SPICE structure, which is two bulkheads connected by
tripod legs. With this type of structure, it is suspected that low frequency mode effects

will dominate.
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The state-space system model from Equation (2.61) can be partitioned as follows

[9:123]):
o X, (1) _ F, F,Ix® B, G,
X(t) = l:*z(’)} = [le Fzz][xz(’):l+ [Bz :|u(t)+|:G2 w(t) (2.79)

where the system is driven by deterministic controls, u(¢), and zero-mean, white Gaussian
noise W(?) of strength Q(z). The upper partition, X,(z), corresponds to the low

frequency modes to be maintained, and the lower partition, X, (¢), corresponds to the high

freanency modes to be removed.

Assuming instantaneous steady state in the higher modes (X,(z)=0), these

modes can be eliminated with negligible impact to overall system performance. The lower

partition differential equation is set equal to zero by [9:123]:
X, () =F, %, () + F,X, (1) +Bu(n) + G,w(1) =0 (2.80)

Since F,, and F,, are square matrices and assuming Fj, exists, X, (f) can now be written

in terms of X, (¢) and system inputs:
X, (t) = =F;[F, %, () + Byu(t) + G,w(?)] (2.81)
Substituting Equations (2.80) and (2.81) into Equation (2.79) results in [9:123]:

X,(t)=[F,; — F,,F5 F, |x,(1) +[B, - F,F;;B, Ju() +[G, - F,,F;;G, [w(r) (2.82)
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Analogous to other developments in this Chapter, the equivalent discrete-time
model will be developed. The equivalent discrete-time model of Equation (2.79) is given
as [2:3-24]:

_[ %)) [P @ |fX) ] [ Ba G
X(t;y) = [xz(tm)] = [4’21 ¢22:|[X2(t,- )] + [de]u(ti) + I:Gdz:IWd ) (2.83)

Similar to the steady-state assumption for the continuous-time case (X,()=0), the

discrete-time steady-state assumption becomes (x2 () =X, (1 )). Thus, the higher-

order modes of Equation (2.83) are represented as [2:3-24):

D, X, (1) +[@,, — I]X,(1,)+ Byu(t,) + G, W4 (1) =0 (2.84)
X, (1) =@y, - 1]"[4)21)(1 (1) +Bu(r,) + Gy, W,y (1)] (2.85)

In order to evaluate these discrete-time matrices from the continuous-time matrices, a

first-order approximation method is used as follows [2:3-24, 19:172, 357]:

®,, =1+F,,Ar (2.86)
®, =F,At (2.87)
B,, =B,A (2.88)
G,, =G,Ar (2.89)
Q,=Q/ At (2.90)

This last equation comes from the first-order  approximation of
G,,Q,Gl, =G,Q,G) At and G,, = G,At [2:3-25, 18].
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Substituting Equations (2.86) through (2.90) into Equation (2.85) results in:
X, (1) = [ FpAt] [Fy A, (1,) + B,Am(s,) + G, AW, ()] (2.91)
where W (¢;) has covariance Q. Eliminating At from this expression results in:
X,(t,) = —Fp, [F,,X,(t;) + B,u(t,) + G,W,(1,)] (2.92)

This is the same result obtained in the continuous-time case, Equation (2.81), with the
exception of W, (¢,) replacing W(z). Then, substituting Equation (2.92) into the discrete-

time measurement equation:

X,(t;)

2(y,)= [Hn Hz][xz )

] +V(¢,) (2.93)

and expanding, yields [2:3-25]:
(1) =[H, - H,F,Fy [x,(5,) - H,F; [Bu(t,) + G,Wy ()] + V(%) (2.94)

The second term in this measurement equation, — HZF{Z'[Bzu(t,.) +G,W,(1,)], is a direct
feedthrough term created by the order reduction [9:123].

One item yet to be determined in this modal reduction method is the break between
the low and high frequency modes. This is accomplished by examining an ordered list of
the modal frequencies and deciding what constitutes a natural break or jump in modal
frequency. The actual break-point made comes from physical insight and desired

computation load.
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With the break-point known, the system dynamics matrix from Equation (2.77) is

separated into an augmented form as [9:123]:

-["2§1‘°1] [“D% 0 0
_ I 0 0 0
F= (2.95)
0 0 |[240,] [-mg]
0 0 1 0 |

The low frequency modes to be maintained are represented by the upper left quadrant, and

the higher frequency modes to be removed are represented by the lower right quadrant.
These two quadrants correspond to the F;, and F,, partitions in Equation (2.79) with the

off-diagonal blocks, F,, and F,,, set equal to zero. Substituting this information into

Equations (2.82) and (2.94) yields [9:123]:

X ()=, & (1) +Bu@)+ G,w,()

. - - (2.96)
=KX, (1) +Bu()+ G w, (1)
2(t,) = H %, (¢)- B,F;}| Bu@t,) +G,w,(2)|+V.(,
(5) = B %, (0) - BLE;; B, Wa(t)]+v,(5) -

H %,(1,)-D,u(,)+ D, w,()+v,(t)

where the effect of F;, =0 and F,; =0 is seen explicitly, and where the subscript, r,

denotes “reduced-order.” Thus, the direct feedthrough matrices, f)u and D, allow the

effects of control and dynamics driving noise inputs to be “seen” in the reduced-order

measurement.
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2.9  Summary

In this chapter the fundamental concepts concerning the Kalman filter, the state
and parameter estimator (the MMAE), and the stochastic controller (the MMAC) were
presented. For the MMAE and MMAC, various algorithms and enhancements were
presented that have been studied in the past. Shown below is a summary of the
assumptions and particular estimator/controller options (particular algorithms) which are
to be used in this research effort.

- Kalman filter: Based on linear, time-invariant system model driven by

stationary noise.

- LQG controller: Constant state and control weighting matrices, no cross-

weighting matrix.

- MMAE: ME/A and ME/ will be considered.

Move logic will be Parameter Position Estimate Monitoring

- MMAC: “Modified” MMAC will be used.

Additionally, presented in this chapter were the dithering techniques to be used for
enhancing parameter identification and the mathematical modeling for developing reduced-
order filter models. The dither inputs are to consist of (1) square wave, (2) sine wave, (3)
swept sine wave, and (4) wide band noise. The mathematical modeling consists of (1) the
Physical Coordinate Form, (2) the Modal Coordinate Form, and (3) the Modal Reduction
Technique. Chapter 3 will present the actual system structural model development to be

used in this research.
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3. System Development

3.1  Introduction

This chapter presents a summary of the SPICE 2 system model originally
developed by Gustafson [2: Chapter 3]. The physical structure of the SPICE 2 model is
described, followed by a description of the mathematical models used to simulate the
actual structure and its disturbance inputs. The truth and filter models used in this

research are also discussed.

The addition of rigid-body states is presented here as well. These are used to
simulate planar motion of the structure so as to induce naturally occurring structural
vibrations. This is an addition to Gustafson’s development and is used to complement the

research of applying dithering techniques for enhancing uncertain parameter identification.

3.2  SPICE Structure

The structure model used in this research is model 2 of the SPace Integrated
Controls Experiment (SPICE) [14: Chapter 3]. The actual structure resides at Phillips
Laboratory, Kirtland AFB, New Mexico and has subsequently been revised up to model 5.
For the purposes of this research, however, the SPICE 2 model will suffice, since this
research effort is devoted to applying and proving concepts within the area of adaptive

filters and controllers.
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3.2.1 Physical Description

The SPICE structure is composed of three major sections, as illustrated in Figure
3-1. The hexagonal base or bulkhead is 6.19 meters in diameter. This base supports the
entire structure and also contains the primary mirror assembly mounted on its top. Three
tripod legs connect the bulkhead to the top portion, which houses the Secondary Mirror
Assembly (SMA), which is 1.32 meters in diameter. The overall height of the structure is
8.44 meters. The X-Y axes are centered and in the plane of the structure’s base, with the
Y-axis pointing towards tripod leg number 1. The Z-axis points straight up the middle of
the structure and is the Line of Sight (LOS) axis. The 12 Proof Mass Actuators (PMAs)
located on the tripod legs contain their own local coordinate frames, while the 6 PMAs

located at the base are aligned along the Z-axis.

Keeping the secondary mirror assembly aligned with the primary mirror assembly
is the main concern of the SPICE research. An exaggerated non-alignment is shown in
Figure 3-2. For this research, pure torsional bending (about the Z-axis) is not considered,

since it has only minor impact on the line-of-sight tracking error.

3.2.2 Actuators and Sensors

The actuators are the Proof Mass Actuator (PMA) type and are used to quell any
vibration of the tripod legs or the bulkhead. The sensors used are accelerometers and are
collocated with the PMAs. The accelerometers are used to measure the relative bending
motion of the structure. Twelve PMAs and accelerometers are located on the tripod legs,
four on each leg. On each tripod leg, two PMAs and accelerometers are located at both
the one-third and two-third length positions. Six PMAs and accelerometers are located at

the base of the structure. Thus, the structure contains 18 PMAs and 18 accelerometers.
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Figure 3-1. SPICE Structure [14: I1I-14]
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Figure 3-2. Flexible SPICE Structure

3.3  System Mathematical Model Description

The mathematical model of each component of the SPICE 2 system is presented
here. The overall block diagram of the system model is shown in Figure 3-3. The
Disturbance, PMA and Accelerometer blocks all contain shaping filters and state-space
models for their respective functions. The LOS block is merely a transformation matrix

which outputs the LOS coordinates, “x” and “y”, which indicate the
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alignment/misalignment of the secondary mirror assembly with the primary mirror
assembly. The Structure block contains the structural bending dynamics. As shown in
Figure 3-3, the Structure block does not contain the augmented rigid-body dynamics. The
addition of rigid-body states will be shown later in the chapter. The MMAC block
represents the entire moving-bank multiple model algorithm for providing active control of

the SPICE structure.

) Structure LOS
) Disturbance y 39 =X
w, % n 6 > » >
y

Accelerometers
w18 — A | Ve 18] z
pma—™ ypma 18 >
—
T s
T 18 y pos w a
18 Yyel
MMAC
18 U omd 18
=

Figure 3-3. SPICE System Block Diagram [2: 3-5]

3.3.1 Disturbances

The structural disturbances are modeled as entering the structure at six points: at
the top and bottom of each tripod leg. Details of how these disturbances impact the

structure are given shortly in Equation (3.3). These are modeled as shaped noise over the
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31.416 to 62.832 radians per second (rps) frequency range. This is modeled as 6 white
noise inputs of equivalent strength, each shaped by a fourth-order notch filter, as shown in
Figure 3-4. Thus, the disturbance model contributes 24 states to the system model. The

state equation for this model is given as:

X, ()=Fx, (1)+G,w,(1) (3.1

where;

X, () = 24-state vector representing the disturbance states

e F = 24-by-24 constant plant matrix

G, = 24-by-6 constant noise input matrix

W, (t) = 6-by-1 unit-strength white Gaussian noise vector

The corresponding output equation is:

n@®=Cx,(t) 3.2)
where:

¢ N(¢) = 6-by-1 output colored noise vector

e C, = 6-by-24 constant matrix

High-pass Filter Low-pass Filter

n 0.2905s> 3647.8
_6—7 s?+ 44.422s + 985.95 ﬂ s*+ 88.84s + 3947.8

Figure 3-4. Disturbance Model Block Diagram [2: 3-6]
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The output vector is defined as:

n | [SMA x disturbance Leg 1
n, SMA y disturbance Leg 2
n, SMA z disturbance Leg 3
n, Bulkhead z disturbance Leg !
n, | | Bulkhead z disturbance Leg 2 (3.3)
| Bulkhead z disturbance Leg 3 |

3.3.2 Proof Mass Actuators (PMAs)

Each of the 18 PMAs are modeled identically as shown in Figure 3-5. They are
modeled as second order high-pass filters with a cutoff frequency of approximately 30 rps.
Since the PMA design is second order, the 18 PMAs contribute 36 states to the system

model. The state equation for the PMA model is given as:

Xy ) =F, X ., ()+B, M ()+G, W, (t) (3.4)

where:

X pm(t) = 30-state vector representing the PMA filter states

F,,.. = 36-by-36 constant plant matrix

B,,., = 36-by-54 constant deterministic input matrix

G ., = 36-by-18 constant noise input matrix

u,,,, = 54-by-1 “control” vector composed of components U, ;, U,,; and U,

w pma(t) = 18-by-1 unit-strength white Gaussian noise vector




18
18 201.68
18 uvel
18 4480.8 < >: 18
18 upos

Figure 3-5. PMA Block Diagram

Note that U,,, is the control output of the MMAC. Additionally, W,,, and U, are Y¥,,,

and Y, respectively, of Figure 3-3, i.e., outputs of the “structure” block. These are the

relative velocities and positions of each PMA mass, taken with respect to the point on the

structure where the PMA is attached [2: Chapter 3 pg. 12].

The corresponding output equation is given by:

Y oma(8) = C piaX pma (1) + Dy WU (1) + D 1 W 1 (2) (3.5)
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where:

Y oma() = 18-by-1 output response vector

C

D, yms = 18-by-54 constant deterministic input direct feedthrough matrix

D

pma

w pma

= 18-by-36 constant output matrix

= 18-by-18 noise direct feedthrough matrix

The direct feedthrough matrices result from an equal order over equal order filter transfer

function. The control and noise input vectors, u,,,, and W ., respectively, are defined

as:

and

pma

pma

"PMA 1 command ]
PMA 2 command

PMA 18 command
PMA 1 velocity
PMA 2 velocity

PMA 18 velocity
PMA 1 position
PMA 1 position

| PMA 18 position |

" PMA 1 noise ]|
PMA 2 noise

| PMA 18 noise

39

(3.6)
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The output vector, Y ,,,, is defined by:

[y, 1 [ PMA 1 response ]
Y, PMA 2 response

ypma = . =

(3.8)

Yis| [PMA 18 response |

3.3.3 Structure

This section first presents the equations associated with the flexible structure. This
is followed by the augmentation of the flexible dynamics with the rigid-body dynamics.
The desired coupling is formed from this augmentation in order to excite flexible bending

motion of the structure when a rigid-body control is applied.

3.3.3.1 Flexible Dynamics
In general, the flexible dynamics of the structure are represented by the following

state equation:

X, (1)=FXx (t)+BY,,.(t)+Gn() (3.9)

where

X, (z) = 2n-by-1 state vector representing the structural flexible bending modes

¢ n = number of structural flexible bending modes

F, = 2n-by-2n matrix

B, = 2n-by-18 constant matrix
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o G, = 2n-by-6 constant matrix

¢ N is defined by Equations (3.2) and (3.3)

® Y ,ma is defined by Equations (3.5) and (3.8)

The associated output equation is defined as:

Yy, ()=Cx(1)+D n()+D,y,,,(*) (3.10)

where

Y. = (¢) 93-by-1 PMA output response vector

C, = 93-by-2n constant output matrix

D, , = 93-by-6 noise direct feedthrough matrix

D, = 93-by-18 constant deterministic input direct feedthrough matrix
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The corresponding output vector is defined as:

-

| P

Y
Y,

Y39
Yo
Ya

Ys1
Vss
Yso

N
Yas
Y1

| Yo3 |

[LOS optical element 1, y,,
LOS optical element 2, y, .,

LOS optical element 39, y,,
PMA 1 acceleration, Yy, ,
PMA 2 acceleration, y,.,

PMA 18 acceleration, y, .5
PMA 1 VCIOCitY9 y vell
PMA 2 VCIOCitY’ y vel2

PMA 18 Velocity, yvells
PMA 1 position, .4
PMA 2 position, ¥,

_PMA 18 pOSitiOn, y pos18

3.11)

The first 39 elements comprise the Y, vector, as indicated in Figure 3-3. These LOS

outputs are obtained from an optical scoring system which uses 39 separate laser and

sensor pairs to detect changes in position of the secondary mirror assembly with respect to

the primary mirror assembly. These LOS outputs are multiplied by a LOS transformation

matrix in order to obtain the “x” and “y” line-of-sight errors, as indicated in Figure 3-3.

The Y, output vector (elements 40 through 57) indicates the relative acceleration of

each PMA mass with respect to the point on the structure where the PMA is attached.

These acceleration outputs are used by the accelerometer model, yet to be discussed in

Section 3.3.4. The remaining velocity and position outputs are similar to the acceleration

outputs and were discussed in Section 3.3.2.
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As indicated by Equation (3.9), the flexible structure modeling adds 2 states to
the system model. The next section will address the augmentation of rigid-body states.

3.3.3.2 Rigid-body Dynamics

The rigid-body motion considered in this research is planar motion. Thus, two
additional states are required. In polar coordinate terms, these are angular position and
angular rate. For the purposes of this research with the SPICE 2 flexible structure, this
motion is confined to be perpendicular to the Z axis, rotating about an axis in the X-Y
plane. The axis of rotation is located at the base (bulkhead) of the structure. Refer to

Figure 3-6 for an illustration of a typical rigid-body rotation.

Figure 3-6. Rigid-Body Rotational Motion
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The two-dimensional rigid-body dynamics can be described by:
M(t) = I8(1) (3.12)

where M(t) is the moment causing the rotation to occur, / is the constant moment of

inertia matrix about the point of rotation, and é(t) is the angular acceleration. Put into

state space form, this becomes:
Xy, (2) |1 o x,,(®) 0
[erb(t):I - [0 0][x2rb(t):| + [%:lurb(t) (3.13)

*  X,,(t) = rigid-body angle position = 8(¢)

where

* X, (t) =rigid-body angular rate = é(t)
e u,(t) =rigid-body control applied = M(t)

In more general terms, Equation (3.13) can be written as:

%,(0) =F,X,,()+bu, (1) (3.14)

When the rigid-body dynamics are augmented to the flexible dynamics, Equation (3.9)

X0 | [F, 0Jx®] [B, b, [Ym®], [GC,
[f‘,b(t)]—[o F,,,][x,,,(:)]"[o b, ][ u,,,(t)]+[0]"(') (3.15)

becomes:
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Note that an additional column is augmented to the flexible structure B,. The b,
vector is simply one particular column of the B, matrix. This comes from the way in
which the rigid-body control is applied to the structure. For ease of simulation, rigid-body
control is applied at the structure’s base at one of the PMA locations. (PMA location
number 13 was used in this research; recall Figure 3-1.) In order for the flexible dynamics

of the system to be realized from the action of applying a force to a particular location on

the structure, the appropriate column of B, must be included in the augmentation, so that

it is correctly multiplied by u,, (¢).

3.3.4 Accelerometers
Each of the 18 accelerometers is modeled as a first order high-pass filter with an
additive corruptive shaped white noise. The noise filter is modeled as a second order

high-pass filter. The block diagram for the accelerometer design is shown in Figure 3-7.

High-pass Filter

Wo 18 03155 18

» 1.47e-4

Y

524+ 44.4225 + 986.96

y
— s+3.sl418 j\) = 2

Figure 3-7. Accelerometer Design
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With 18 inputs, the accelerometer model contributes 54 states to the system model. The

state equation for the accelerometer design is given as:

. %@ | _[Fa 0 Tx,() B, 0 316
=000 B lx.0] o =06, M OO

where

X, () = 18-state vector representing the accelerometer response states

X, ,(¢) = 36-state vector representing time-correlated accelerometer noise

F, = 18-by-18 constant accelerometer plant matrix

F, ., = 36-by-36 constant accelerometer noise plant matrix

B, = 18-by-18 constant input matrix

G,,, = 36-by-18 constant noise input matrix
* Y,.(2) is defined by elements 40 through 57 of Equation (3.11)

e W, = 18-by-1 unit-strength white Gaussian noise vector

The output of the accelerometers is the measurements and is given by the measurement

equation:

xa (ti)

2()=[H, H.,a][x )

]+ Dy Yo () + D, w,. () (3.17D

where
e X, (t;) = 18-state vector representing the accelerometer response states
e X, ,(t) = 36-state vector representing time-correlated accelerometer noise

e H, = 18-by-18 constant accelerometer measurement matrix
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e H,, = 18-by-36 constant accelerometer noise measurement matrix

o D __ = 18-by-18 constant direct feedthrough matrix

yYa

D,,, = 36-by-18 constant direct feedthrough matrix

Y. () is defined by elements 40 through 57 of Equation (3.11)

W, . = 18-by-1 unit-strength white Gaussian noise vector

The direct feedthrough matrices in the second and third terms of Equation (3.17) are a
result of the accelerometer model containing transfer functions with equal order numerator

and denominator.

3.4  Truth Model and Filter Model

The system model presented thus far contains 114 + 2n states. The 114 states are
comprised of PMA, accelerometer, and input disturbance and accele:ometer measurement
noise states. The structure contributes the 2n states for n flexible modes. The truth model
used by Gustafson [2] will be employed here, and that is with a 40-mode structure model.
This gives 194 states for the truth model. Using 40 flexible bending modes as the truth
model creates a model with undamped natural frequencies below 100 Hz, which is the
frequency limit of the research model. A 194-state truth model is also computationally

feasible for simulation purposes.

The filter model consists of the same truth model states with the shaping noise
states all replaced by white noise. This reduces the number of states to 54 + 2n = 134
with 40 flexible bending modes. Gustafson also investigated other reduced-order filter
model designs based on the techniques of modal reduction and internally balanced model
reduction. The MMAC did not perform well with these reduced-order filter designs,

however. This poor controller performance may have been partially due to the low
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number of bending modes utilized (6 bending modes). Current research by Schiller 28]
with the subsequent SPICE 4 model has utilized 26 bending modes in a reduced-order
filter and controller, which has produced excellent MMAC performance. While not all of
the improvement in controller performance may be attributed to the higher number of
bending modes utilized, this does certainly warrant another look with the SPICE 2 model.
Thus, another reduced-order filter model consisting of 26 bending modes (52 bending
mode states) + 54 PMA and accelerometer states (106 total states) will be considered in
this research. The reduced-order filter model will be constructed using the modal
reduction method described in Chapter 2. Particularly once more precise measurements

are assumed, this reduced-order design model may well yield good performance.

3.5 Summary

This chapter has presented a brief discussion of the SPICE 2 system model used
for this research. This included a description of the physical structure, along with a look
at each subsystem. The mathematical models for input disturbances, PMAs, the flexible
and rigid-body dynamics and accelerometer measurements were presented. The truth
model was shown to consist of 194 states while the filter models were shown to consist of

134 and 106 states.

The next chapter will discuss all aspects of the various software programs used for

simulating the MMAE and MMAC algorithms.
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4. Simulation

4.1 Introduction

This chapter presents a discussion of the software and the computer simulation
plan used to analyze the effectiveness of the moving-bank MMAE and MMAC aigorithms
as applied to the SPICE 2 structure model. A Monte Carlo analysis is the main instrument
used to show this effectiveness and is performed using the MMAE/MMAC software
developed from previous thesis research [1, 2, 5, 7, 11, 26, 29, 32]. The formation of the
discretized parameter space and the changes made to the existing software will also be

discussed in this chapter.

4.2  Monte Carlo Analysis

A Monte Carlo analysis is performed in order to evaluate the performance of the
moving-bank MMAE and MMAC algorithms. This is accomplished by using the
simulation software (see Section 4.3) to produce multiple-run sample statistics of the data
of interest (estimation errors for filter performance and line-of-sight deviations for
controller performance, as well as parameter estimation errors for both cases). The main
emphasis of the simulations will be with the 194-state truth model versus the 134-state
filter model, although one comparison is made with a 106-state reduced-order filter model

(see Chapter 3).

The simulations performed can be broken into two areas: estimator analysis and

controller analysis. These two are depicted in Figure 4-1 with variables defined as:




Truth

w
Model ‘
—-| C, 20- .
(=] (o] ¢—
e
Dither Signal/ H, G .
Rigid-body Motion
+ 2 &
v *Dé I[ Estimator > %
> 8
| S
(@)
>X,
»>a

Z

(b)

Estimator/
Controller

»>e
149 :

Figure 4-1. (a) Estimator Simulation, and (b) Controller Simulation [29]

X, (z;) = truth model states

e _(t;) = error in the system estimate
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X ;(;) = filter estimates of the system states

a, (t;) = parameter vector implemented in the truth model
a f(t,-) = filter estimates of the uncertain parameter vector

e, (#;) = error in the parameter estimate defined as: e,(;) = a,(¢;)—a ,(¢,)




The following sections present the error vector formulation and the error vector

statistics.

4.2.1 Error Vector Formulations

The X and Y Line-of-Sight (LOS) deviations are the concern in this research.
Therefore, for the estimator performance evaluation, an error vector is formed by
subtracting the filter-determined X and Y LOS values from the corresponding truth-
model-calculated values. This is shown in Figure 4-1(a) and by the following equation:

K
e ()= Ctxt(ti)—chjifj(t‘)'pj(ti) @.1)

j=1

where C, and C 5, are the output matrices used to determine the X and Y LOS deviations
for the truth model and jth filter model respectively. The summation in this equation is
computed by use of the conditional probabilities from each of the filters in the moving

bank (as presented in Chapter 2). The actual form of this error vector is given by:

e, (¢ X —axis LOS positi
( )]_[ axis position error] “2)

e (t)= =
+(8) [exz (t) Y —axis LOS position error

For the controller performance evaluation (closed loop performance), the item of
primary concern is how well the LOS deviations are quelled to zero. Thus, the vector of

importance is given by the following equation:

e;(tg ) = C;xp (t‘) (4'3)
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where @’ (¢,) is the vector of the true X and Y LOS deviations (position errors). The
control vector u(;) in Figure 4-1b also warrants investigation, to ensure that commanded

controls are of reasonable magnitude. In both estimation and control, €, of Figure 4-1

also merits inspection, to determine how effectively the algorithm estimates the uncertain

parameter a in its attempt to provide adaptive estimation or control of states.

4.2.1 Error Vector Statistics
The mean or average value of the error vectors just defined is one of two critical
statistics, and the main statistic used for portraying parameter estimation performance, in

this research. The mean is given by: [19: 129]:

L
Ele,(t)}=M, ()= %Zen ) 4.4)
=1

where L is the number of Monte Carlo runs made, and @, (#;) is the value of the error
vector during the /" simulation at run time f,. The covariance of the error signal is

calculated by [19: 130]:

P, ()= E{[ex(t,-)- Ele.()}]e.) - Ele., >}]T}

__LI N T L T
- .L_——l-; {e‘l @ )exl (ti )} - ﬁMe, (ti )Max ) 4.5)

Equations (4.4) and (4.5) represent general formulas for calculating error vector

statistics and are used to calculate the mean and covariance of €’,(#;) and e,(¢;) as well.




Additionally, this research will use L = 10 Monte Carlo runs to generate the sample

statistics.

The error vector statistics described above will be useful for creating plots of the
desired variables. However, in order to quantify the performance of the controller in a
compact manner, suitable for tabulating, another statistic is used. This is the temporal

average of the RMS value and is calculated by [2: Chapter 4 pg. 4]:

1 i -
M, =~ ¥ J[M,; (t)ML, (1,)+ P, )]” forp=1land2 (4.6

Jj=i-N+1

where M,, is the temporal average of the p'h component of €/, and N is the number of
sample periods over which the temporal averaging is accomplished. For this research, the

temporal average will be taken over the last three seconds of the run duration.

4.3 Simulation Software

In the most recent study by Gustafson [2], the software (composed of MATRIXx
{16] and FORTRAN programs) which was “handed down” from previous research [1, 5,
7, 11, 26, 29, 32] was modified for the SPICE 2 model. The software is still resident on
the Sun workstations and is split into three sections: (1) preprocessor, (2) processor, and
(3) postprocessor. Each of these is discussed below as to its function and the changes

made during this research.

4.3.1 Preprocessor
Inherited Preprocessor. The preprocessor is actually two separate processors: a
MATRIXx portion and a FORTRAN portion. MATRIXx is used to generate the

discretized truth and filter model matrices as well as the steady-state filter and controller
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gain matrices. These matrices are then stored in files (one file for each truth and filter
model based on a particular discretized parameter value) to be read in by the preprocessor
FORTRAN program, which merely “collects” all the information for each parameter
model and stores the variables into two files (one for the truth models and one for the

filter models) to be read by the processor.

Current Preprocessor. During this research it was found that the MATRIXx
routine for obtaining the steady-state controller matrix, E:, did not converge to the
proper value. Investigation into this discrepancy showed that the MATRIXXx routine did
converge properly for the simple example in the MATRIXx manual. Further investigation
showed that the MATLAB [15] routine for solving the steady-state gain matrix did
converge properly for the SPICE 2 model. Thus, all the preprocessor MATRIXx coding
was converted to MATLAB. As will be shown in Chapter 5, even though the MATRIXx
routine failed to converge to the proper controller gain, identical resuits for the closed-
loop temporal average values were obtained as compared to Gustafson’s [2].
Additionally, the residual covariance calculation and its inverse, A, and A;' of Equation
(2.29), were removed from the FORTRAN portion of the code and put into MATLAB.
Problems persisted in the past with this matrix inverse calculation, but the MATLAB
routine showed no problems. One other major change to the preprocessor was to convert
the FORTRAN code to double precision arithmetic to allow for greater numerical

accuracy. The double precision routines were compiled with the IMSL library [6].

4.3.2 Processor

Inherited Processor: This set of FORTRAN subroutines performs the Monte Carlo
simulation. This is done by propagating the truth and filter models, with dynamics and
measurement noises simulated by appropriate scaling of the outputs of a unity variance

random number generator available in FORTRAN. The different types of bank movement
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and MMAE/MMAC options are performed as well. The various variables to be analyzed
are output to separate files for each sample time and run. These files are then read in by

the postprocessor.

Current Processor: A few changes were made to the processor for enhancement
and to allow for the analysis required in this research. First, the conversion to double
precision was made, as with the preprocessor. Second, code was added for applying
open-loop dither inputs. Options were made available via an input data file for selecting
square wave, sine wave (fixed and swept frequency), or wide band noise. Third, the
program was modified to allow for rigid-body states to be included, augmented to the
bending mode states originally simulated. This was accomplished for the purpose of
simulating rigid-body slew commands in order to analyze the effects on uncertain

parameter identification enhancement.

Two other changes were made to the processor due to inadequacies discovered.
The first concerns the bounds placed on the probability calculation. From the discussion
in Chapter 2, there must be a lower bound placed on the calculated p, probabilities. The
value for this bound was set to 0.1, which was too high. The lower bound was reset to
0.01. Additionally, it was found that the code allowed for an upper bound to be placed on
the calculated probability as well. This upper bound was removed all together. The
Q‘srcond change concerns the probability density calculation. It was found that, if the
residuals were too large, the exponential term in Equation (2.27) was driven to zero, due
to finite word length with the digital computer. In many situations, this would occur for
each of the k filters, resulting in the entire denominator of Equation (2.26) being evaluated
as zero, preventing the probabilities from being calculable. So, a check was put in the
code, such that, if the density calculation produced zero, it was reset to a very small value

(to approximate a near-zero value and allow the probability calculation to continue).
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4.3.3 Post Processor
Inherited Post Processor: This FORTRAN program calculates all the pertinent

statistics used for analyzing the MMAE and MMAC performance. These statistics are

output to separate files to be used by a compatible plotting routine.

Current Post Processor: The only change to the post processor was the conversion

to double precision. MATLAB was used to plot the data output by the post processor.

4.4 Analysis Plan

This research effort is directed towards improving the parameter identification
performance by use of various dither input signals prior to application of closed-loop
control. The secondary issues are threefold: (1) possible satisfactory performance with a
26-bending mode reduced-order filter model, (2) possible controller performance
improvement via better accelerometer measurements (less measurement noise), and (3)
possible estimator/controller/parameter identification performance improvement via an

alternate discretized parameter space (different from that used by Gustafson [2]).

Before any of these issues are explored, however, the software and system models
will be verified by attempting to reproduce the single filter benchmark results obtained by
Gustafson [2]. Additionally, throughout the dither signal analysis, a comparison will be
made between the ME/A and ME/I methods of probability density calculation (discussed
in Chapter 2). The next three sections discuss in further detail the issues concerning input
dither frequency, improvel accelerometer measurements, and parameter space

discretization.

4.4.1 Dither Frequency Selection
Based on the research accomplished by Hanlon [4], the flexible structure modal
frequencies are the basis for selecting the dither frequencies. The modal frequencies
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correspond to the system eigenvalues and are useful, since inputs based on these
frequencies should excite the system more than by using some other arbitrary frequency.
The modal frequencies for the first 30 modes are listed in Table 4-1. In order to determine
which frequency or frequencies are best suited for exciting the system, the dither input
frequency will be swept through the range of modal frequencies using a sinusoid signal. It
is expected that a dither frequency corresponding to one of the lower bending modes will
excite the system most effectively, due to the physical characteristics of the space structure
— it being two rigid bulkhead assemblies attached by tripod legs. Once this “best” dither
frequency is determined, it will be used as the basis for square wave and wide band dither

inputs as well.

4.4.2 Improved Accelerometer Measurements

In this analysis, an attempt will be made to provide a benchmark with a “perfect”
measurement model. This will be accomplished by changing the gain in Figure 3-7 io
zero. This will have the affect of removing all accelerometer measurement noise. Next,
the original gain will be reduced by one and two orders of magnitude in order to simulate

a possible realistic improvement in the measurement device. In each of these cases it will

be necessary to modify (retune) the original R ¢ matrix values for optimal results.

From Table 4-1, note that the first 26 modal frequencies are less than 50 Hz.
Recall from Section 2.7.2 that, with a sampling time of 0.01 sec, the maximum useful
sinusoid dither frequency is S0 Hz. Thus, the dither input frequencies used in this research
will be limited to the first 26 modal frequencies. This may not be an actual limitation,
however, since it is expected that the optimum dither frequency will reside within the

lower modal frequencies.




Mode Eigenvalue Damping Ratio | Natural Frequency (Hz)
1 -0.09729 £ 48.64j 0.002 7.7418
2 -0.1115 £55.77j 0.002 8.8762
3 -0.1115 + 55.77j 0.002 8.8763
4 -0.2318 £ 115.9j 0.002 18.446
5 -0.2318 £ 115.9j 0.002 18.449
6 -0.2350 £ 117.5j 0.002 18.720
7 -0.3357 £ 167.8j 0.002 26.712
8 -0.3604 + 180.2j 0.002 28.681
9 -0.3605 + 180.2j 0.002 28.684
10 -0.3793 + 189.6j 0.002 30.180
11 -0.4103 +£205.2j 0.002 32.654
12 -0.4106 1 205.3j 0.002 32.673
13 -0.4164 1 208.2j 0.002 33.135
14 -0.4166 * 208.3j 0.002 33.150
15 -0.4168 + 208.4j 0.002 33.168
16 -0.4624 +231.2j 0.002 36.798
17 -0.4626 + 231.3j 0.002 36.816
18 -0.4689 + 234 .4j 0.002 37.312
19 -0.5407 £ 270.3j 0.002 43.025
20 -0.5409 +270.4j 0.002 43.040
21 -0.5628 +281.4 0.002 44784

22 -0.5697 £ 284.8j 0.002 45.334
23 -0.5698 + 284.9j 0.002 45.343
24 -0.6116 + 305.8j 0.002 48.669
25 -0.6215 £ 310.7j 0.002 49.455
26 -0.6216 £ 310.8j 0.002 49.467
27 -0.6724 £ 336.2j 0.002 53.505
28 -0.6894 + 344.7j 0.002 54.864
29 -0.7004 1 350.2j 0.002 55.732
30 -0.7008 + 350.4j 0.002 55.770

Table 4-1. Modal Eigenvalues and Natural Frequencies for the First 30 Modes
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4.4.3 Parameter Space Discretization (Sensitivity Analysis)

A sensitivity analysis is performed in order to produce a set of discrete parameter
points. This is accomplished by setting the truth and filter models to the nominal
parameter value, i.e., the nominal values for the undamped natural frequencies of the
bending modes. Simulations are then run in this single filter mode with closed loop
control applied. On each successive run, a scalar multiplier on all the undamped natural
frequencies in the truth model is varied by a small amount, 8, until the closed loop control

becomes unstable. The change in each undamped natural frequency is given by:

®,,, =1+d)w,, 4.7)

Once the value for & is found which produces unstable control, a new parameter point is
found by reducing this value for & by 10 %. Then, the truth and filter models are reset
with the new values for the undamped natural frequencies, and the process is repeated in
order to obtain a new value for & and a new parameter point. This entire process is
repeated until the desired range in undamped natural frequency is obtained. Parameter

points are also generated by changing the modal frequencies in the opposite direction by:

®,,, =1-8)o,, 4.8)

This method of performing a sensitivity analysis to obtain the discrete parameter
points allows for the widest spread between each point, without any two adjacent points
being so far apart so as to produce unstable closed-loop control. Also, this would yield
residuals in filters at adjacent parameter points that would have sufficiently different

characteristics that the p, computation of Equations (2.26) to (2.29) would not be

incapacitated by such residuals being virtually indistinguishable from one another.
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However, for reasons discussed in Chapter 5, this method was used only to obtain the first
point, displaced upward in frequency from the nominal values. The resulting & was
0.0025. Twenty-nine parameter points were then generated in approximately the same
span as used by Gustafson [2: Chapter 5, pg. 35], each with a scalar multiplier spacing of
0.0025.

4.5 Summary

This chapter has presented a discussion of the simulation analysis to be performed
in this research. The Monte Carlo simulation has been described, along with the
appropriate error vector formulations. Also included in this discussion has been the
analysis plan which has shown the main points of the research to be accomplished, along

with a detailed look at the formation of the discretized parameter space.

The next chapter will discuss the results of this research.
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5. Results

5.1  Introduction

Research was conducted in accordance with the analysis plan presented in Chapter
4. This resecarch was based on the theory and procedures presented in the first three
chapters as well. This chapter presents the results of this research. As discussed in

Chapters 1 and 4, the areas to be investigated are:

o Use dithering techniques to enhance uncertain parameter identifiability, prior to

engaging closed-loop control

o Investigate the effects of purposeful rigid-body slew commands in regard to
enhancing uncertain parameter identifiability

¢ Investigate an alternative parameter space discretization

o Investigate the effects of increased measurement sensor precision

¢ Investigate the effectiveness of a 106-state modal reduced-order filter/controller

Throughout this presentation of results, reference will be made to graphs located in
Appendix A. These figures include three types: (1) is the mean X one standard deviation
(£0) of the error between the truth model values and filter estimates. This is computed
by Equations (4.4) and (4.5), utilizing the error vector in Equation (4.1), and is referred to
as estimation error. (2) is the mean * one standard deviation (o) of the actual LOS
error. This is computed by Equations (4.4) and (4.5), utilizing the error vector in
Equation (4.3), and is referred to as LOS error. (3) is the mean of the filter-computed
parameter location. The true parameter variation is shown coincidentally so as to indicate
the effectiveness of the multiple model adaptive algorithm in estimating the undamped
natural frequency of the bending modes.
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5.2 MMAE/MMAC “Best Case” Performance

This section presents the results from a single and a multiple (three) filter
simulation with an unchanging parameter value. The single filter represents the artificially
informed filter (non-adaptive case). The multiple filter unchanging parameter value case is
presented in comparison, to demonstrate the ability of the MMAE/MMAC algorithm to
maintain “lock” on a good estimate of parameters, and thus to maintain state estimation

and/or control performance that is comparable to the artificially informed benchmark.

5.2.1 Single Filter Baseline

A duplication of Gustafson’s work was accomplished with the 194-state truth
model vs. the 134-state filter model. The purpose of this simulation with a single filter
was two-fold. First, it provides a verification (in part) that the currently modified software
is performing properly. Second, it provides a “best case” scenario (the filter model
parameters exactly represent the truth model parameters) for comparison purposes. The
plots of Figure A-1 show the estimation error and the LOS error for the X and Y axes
with no control applied. Similarly, Figure A-2 shows the same error plots but with closed-
loop control applied. Note that control is applied at the 0.5 second point. This was done
to allow good state (and parameter) estimates to be achieved (after an initial transient)
before they are used to generate feedback control. Clearly, the LOS deviations are
quelled, not to within 1 [iradian, but to a significant degree. The temporal average values
of the X and Y LOS errors are 24.8 |iradians and 26.1 Jradians, respectively, with no
control, and 4.38 pradians and 4.88 pradians, respectively, with control applied. The
LOS deviations with control applied are precisely the same as that obtained by Gustafson
[2: Chapter 5, pg. 5-30].
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5.2.2 Multiple Model Baseline

The 7-point discretized parameter space developed by Gustafson [2] is used here
with the true parameter set to the nominal (center) position. A bank of three filters is
used, initially centered on the true parameter position. For the ME/A case, Figure A-3
shows the estimation and LOS error for the X and Y axes with control applied. The
temporal average values of the X and Y LOS errors are 4.58 pradians and 5.10 plradians,
respectively. For the ME/I case, Figure A-4 shows the estimation and LOS error for the
X and Y axes with closed-loop control applied. The temporal average values of the X and
Y LOS errors are 5.36 pradians and 6.15 pradians, respectively. It is seen here that the
ME/A method performed with 15 % and 17 % better control on the X and Y axes,
respectively. A summary of the MMAC performance is presented in Table 5-1.

Configuration X-axis ([iradians) | Y-axis ({radians)
Open-loop 24.8 26.1
Single Filter 438 488
Multiple Model (ME/A) 458 5.10
Multiple Model (ME/T) 5.36 6.15

Table 5-1. MMAC LOS Temporal Average RMS Deviations

5.3  Parameter Estimation Performance

This section presents the results from utilizing the 7-point parameter space
developed by Gustafson [2]. Throughout the discussion in this section, the analysis is
conducted without closed-loop control applied. The only control applied is the dither
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signal or the rigid-body slew command (open-loop control). In this research, the dither
signals were input via the control variable, u(z;) at the six PMA points on the bulkhead of
the structure (locations 13 - 18). This seemed to be a logical choice for dither input, given
the shape of the SPICE structure. With the larger mass located at the bulkhead, any
disturbances entering the structure from the base would cause the tripod legs to be more
easily shaken.

5.3.1 Baseline (No Dither)

Before evaluating the model with dither signals, part of Gustafson’s work was
again duplicated in order to establish a baseline to compare against. Here, two sets of
simulations were run. In the first set, the true parameter is allowed to “jump” to a new
value midway in the simulation. Many different configurations were tested. These
included having the bank centered on the true parameter and centered at different
locations in the parameter space at the start of the run. Figure A-5 is representative of
these simulations with the ME/A method, which closely compares to Gustafson [2:
Chapter 5, pg. 5-48]. Figure A-6 is for the ME/I case. Both of these methods provide
poor parameter tracking performance, but the ME/A method displays better performance
than the ME/I method. The second set of simulations consisted of allowing the true
parameter to start at the 1st position and increase by one point every three seconds, up to
the 7th position. Again, the bank of filters is centered at various starting positions on
different runs. With the true parameter value changing in this fashion, the moving bank
was unable to track the varying parameter well, under any bank center starting position.
Figure A-7 is representative of these simulations with ME/A. Figure A-8 is the same
simulation but with the ME/I method. Notice that neither method tracks the true
parameter very well, but that the ME/A method does somewhat better than the ME/I.
This is consistent with the better MMAC closed-loop performance with the ME/A
method.




5.3.2 Dither Signal Enhancement Performance

Swept Sine Wave: Chapters 2 and 4 discussed the idea of a “best” or
identification-enhancing dither frequency. In order to determine this frequency, a sine
wave dither was applied with the dither frequency sweeping through a range of values
(swept frequency sine wave). The frequencies were in the range of 7 Hz to 40 Hz. Recall
from Chapter 4 that this is the range of the lower bending mode frequencies. By using this
swept sine wave technique, the best dither frequency was determined to be 32 Hz, which
corresponds approximately to the 11th modal frequency (see Table 4-1). Figure A-9
indicates the moving bank “zeroing in” on the true parameter value of 6. The simulation
shown starts with a sine wave frequency of 29 Hz and is incremented by 1 Hz every 2
seconds. So, when a frequency of 32 Hz is reached at 6 seconds, the algorithm has
“latched” on to the true parameter point value of 6. The same result of 32 Hz was
obtained using both ME/A and ME/I methods. Since this identification-enhancing
frequency did not correspond to precisely one of the modal frequencies, many different
simulations were run in order to eliminate the possibility of there being a better dither
frequency than 32 Hz. From Figure A-9, it would appear that 33 Hz would work as well,
and in some situations this was true. However, a frequency of 32 Hz performed better
most of the time with different signal amplitudes and with different parameter positions
declared as the true value. The amplitude best suited for this model was found to be 100
Newtons (N). Small deviations from this value did not affect the results, but too small an
amplitude prevented proper parameter identification, and too large a value disturbed the

system to such a degree that prevented proper parameter identification as well.

Sine Wave: With the dither frequency of 32 Hz determined, the full ranging true
parameter variation simulation discussed in Section 5.3.1 was accomplished with a sine
wave dither input signal. Figures A-10 and A-11 show the result for the ME/A and ME/I
methods, respectively. It can be seen that the ME/I method performs better than the
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ME/A method. This is in contrast to the better ME/A performance with no dither applied.
Note that in Figures A-10 and A-11, the parameter estimate is at times “locked” on to a
value which is one off from the true parameter value. For example, in Figure A-11, for the
first 3 seconds, the parameter estimate is indicating a value of 0.5, while the true
parameter value is 1. The reason for this “locking” on to the incorrect parameter value
may be due to the fact that the “best” dither-enhancing frequency is slightly different for
each declared truth model (based on a different parameter value). Remember that the
dither frequency of 32 Hz was chosen because it worked well for the entire range of

parameter values.

Square Wave: The results of the square wave dither input simulations are shown
in Figures A-12 and A-13 for the ME/A and ME/I methods, respectively. As with the sine
wave dither signal, the ME/I method outperforms the ME/A method in parameter
tracking. Many simulations were run with different square wave frequencies (similar to
the swept frequency sine wave simulations). Still, the 32 Hz prevailed as the parameter-
enhancing frequency. It was seen that, even with the extra high frequency content, the
square wave did not adequately enhance parameter identification, when other than a 32 Hz
frequency was used. Furthermore, by comparing Figure A-10 with A-12, and Figure A-11
with A-13, it was seen that there was no substantial difference between the tracking

performance with sine wave or square wave dither inputs.

Wide Band Noise: Frequencies in the range of 7 Hz to 40 Hz were used for the
wide band noise input signal. However, performance was degraded when frequencies
above 33 Hz were used. Different values for the gain were evaluated (see Figure 2-4)
with a value of 100 giving the best performance. Figure A-14 indicates the tracking
performance of the ME/I method with a signal frequency range of 7 Hz to 33 Hz. This
frequency range was then changed to 30 Hz to 33 Hz. Figures A-15 and A-16 show the
parameter tracking performance of the ME/A and ME/I methods, respectively, for this
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frequency range. Again, as with the sinusoidal dither input signals, the ME/I method
provided better tracking performance than the ME/A method.

5.3.3 Rigid-body Motion Enhancement Performance

Before the rigid-body matrices could be augmented to the modal matrices (see
Section 3.3.3.2), a moment of inertia value had to be determined for use in Equation
(3.13). From the physical description of the SPICE 2 model in the SPICE Preliminary
Design Review (PDR) [14], the moment of inertia was determined to be 10000 kg m?.
The simulation proceeded with a rigid-body command input of +1000 N for 1 second
followed by an input of -1000 N for 1 second. These command inputs simulate the
rotating structure, accelerating and then decelerating, producing a total slew angle of
approximately 3.5 degrees. This is consistent with the test performed on the SPICE
model as indicated in the SPICE PDR [14: IV-19] and thus helps to verify the moment of
inertia calculation. Figures A-17 and A-18 show the parameter estimation performance
with the slew commands just described for the ME/A and ME/I methods, respectively. As
these figures indicate, the rigid-body motion causes a significant disturbance, and as the
disturbance quells, the MMAE is able to track the true varying parameter value,
somewhat. The large disturbance shown in these figures occurs between the 1.5 second
point and the 3.5 second point (the time period the slew commands were applied). Once
the rigid-body slewing motion has stopped, the algorithm takes approximately 0.5 seconds
for acquisition of a good parameter estimate. Note that the excellent parameter
identification performance found with purposefully constructed dither signals is not found
here, but that the parameter identification is enhanced, as compared to the performance
with no dither input at all. Also note that the ME/A and ME/I methods perform about the
same, unlike with the purposeful excitation forms of dither enhancement.




—— — T T——

5.4  New Parameter Space Discretization

The simulations discussed in Section 5.3 were based on the 7-point parameter
space developed by Gustafson [2]. However, due to the poor performance of the
parameter estimate tracking without dither enhancement, the parameter point
discretization was re-investigated, as discussed in Section 4.4.3. As indicated in Chapter
4, the first parameter point obtained was only a factor of 0.0025 from the nominal point.
Since it was desired to maintain the same range of undamped natural frequency factors as
that used by Gustafson, this new parameter discretization would require many more than
seven points. The original range of factors was 0.9811 to 1.0466. In order to conserve
time, the new parameter space was determined by equally spacing each point by 0.0025.
The new range used was 0.98 to 1.05. This is not the optimum parameter point spacing,
but it is one with many more points than previously used, and it is easily generated. For
the comparison purposes of this thesis, this will suffice. Thus, the new discretized
parameter space contains 29 points (®, through ®,) with @, as the nominal point, as

indicated by Table 5-2.

Parameter o, @D, =« -« @y . .« . Oy
Factor 098 09825 . . . L0 . . . 105

Table 5-2. Parameter Space Discretization

The same set of simulations as presented in Section 5.3 were run with the new
discretized parameter space to see the :mpact of the finer discretization. These results are

presented in the next subsections.



5.4.1 Baseline (No Dither)

With these simulations, the true parameter varied from the 1st to the 29th position,
changing position every second. The bank of filters is initially centered at the Sth
(nominal) position. Figures A-19 and A-20 represent the beseline simulation for the
ME/A and ME/I methods, respectively. Note the greatly improved tracking performance
with the ME/A method versus the ME/I method. This result is, however, consistent with
the result with the old parameter space tracking performance in that the ME/A method
performed better with no dither enhancement.

5.4.2 Dither Signal Enhancement Performance

Sine Wave: Figures A-21 and A-22 indicate the parameter tracking performance
of the ME/A and ME/I methods, respectively, with a 32 Hz, 100 N amplitude sine wave
dither signal. Notice here that the performance rating for the two methods is mixed. The
ME/A provides better tracking in the middle of the simulation between the 6th and 24
parameter points, while the performance of the ME/I method is better at both ends.

Square Wave: Figures A-23 and A-24 show the tracking performance of the
ME/A and ME/I methods, respectively, with a square wave dither input. The mixed
performance between the two methods is very similar to the performance with the sine
wave dither. The results of the sine wave and square wave dither-enhanced performance
are also consistent with the results from the 7-point parameter space, in that there is no
substantial difference between the performance with sine or square wave dither inputs.

Wide Band Noise: Figures A-25 and A-26 indicate the parameter tracking

performance of the ME/A and ME/I methods, respectively, with wide band noise
frequency inputs of 30 Hz to 33 Hz. A gain value of 100 is used, as with the old




parameter space simulations. Again, as with the sinusoidal dither inputs, the performance
of the ME/A and ME/I methods is mixed.

Rigid-body Motion. The same rigid-body commands were simulated as before.
Figures A-27 and A-28 show the parameter tracking performance of the ME/A and ME/I
methods, respectively. Note that the tracking performance of both these methods is worse
than with no dither input; the reason for this phenomenon is not clear.

5.5 Summary of ME/A vs ME/I Performance
Table 5-3 indicates the compilation of the comparison study accomplished with the
ME/A versus the ME/I methods of probability density computation. As was shown in the

Performance Measure Configuration ME/A | ME1
Multiple Model MMAC | Unchanging Parameter )
Parameter Tracking No Dither v
(7-point Space)
Sine Wave Y
Square Wave \
Wide Band Noise ¥
Rigid-body Motion mixed | mixed
Parameter Tracking No Dither v
(29-point Space)
Sine Wave N
Square Wave v
Wide Band Noise mixed | mixed
Rigid-body Motion )

Table 5-3. ME/A versus ME/I Performance (V corresponds to better performance)
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preceding discussion, neither method is better in every situation. In Table 5-3, & “¥”
(check) indicates which method was better in the given configuration.

5.6  Increased Measurement Precision Performance

Referring to Figure 3-7, the gain of 1.47¢-4 is an indication of the variance of the
truth model measurement noise. For the purpose of establishing a comparison baseline,
this gain was set to zero (no measurement noise), and the single filter closed-loop control
simulation of Section 5.2.1 was run. The RMS values for the X and Y LOS deviations
were exactly the same as with the measurement noise included (4.38 and 4.88 jiradians,
respectively). Appropriate re-tuning of the Kalman filter R matrix values was attempted,
with no change in the result. In fact, the R matrix values could not be reduced by any
significant amount due to the [H(:)P(; )H"(t)+R(%)] term in Equation (2.19)
becoming “too small”, preventing the steady state Kalman filter gain from being
computable due to difficulty in inverting the [H(2)P(t,)HT (¢,) + R(#,)] matrix. Thus,
increased measurement precision had no effect on the MMAC performance. Clearly, more
information in the form of additional measurements, and/or additional actuators, must be
included before desired controller performance will be realized.

5.7  Reduced-Order Design Performance

The reduced-order design model was constructed according to the modal
reduction technique described in Chapter 2. The modal reduced design consisted of the
first 26 bending modes (52 bending mode states) plus 54 PMA and accelerometer states,
for a total of 106 states. This 106-state reduced-order filter was run against the 194-state
truth model in the single filter configuration with closed-loop control applied. Figure A-
29 shows the estimation and LOS error plots with closed-loop control applied. Despite
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the relatively high number of bending mode states included in this filter design, the
algorithm was unable to provide adequate control to quell the vibrating structure. The
temporal averages for the X and Y LOS errors were 21.0 and 23.3 piradians, respectively.
The result is the same as that obtained by Gustafson [2: Chapter 5, pg. 5-21] with his 6
bending mode (66-state) reduced-order filter model.

58 Summary

This chapter has presented the results from the analysis conducted in this research.
First presented was the artificially informed single filter performance baseline, along with a
verification of Gustafson’s [2] single-filter result. For comparison purposes, the multiple
model adaptive algorithm performance with an unchanging parameter value was also
shown. The results of implementing the various dithering techniques were then presented.
The results indicated the excellent parameter enhancement with the sine and square wave
dither signals. The wide band noise dither signal was also found to provide effective
enhanced parameter identification. The results of naturally exciting the structure through
the use of rigid-body slew commands did improve the performance of parameter
identification, although not to the degree exhibited with the purposeful dither excitation.
This was followed by a presentation of results of parameter identification utilizing the new
discretized parameter space. The striking difference in performance with the new, more
finely discretized parameter space was the very good parameter tracking, with no dither
enhancement. Improved parameter identification was also obtained with dither
enhancement. Throughout the discussion of MMAE/MMAC and parameter estimation
tracking performance, a comparison was made of the ME/A and ME/I methods of
hypothesis conditional probability computation. As was shown in Table 5-3, neither
method is better than the other in every situation. Lastly, the results of increased
measurement precision and reduced-order filter design were shown. Although these last

5-12




two areas of investigating did not show the “positive” results as that obtained with the
other areas of this thesis research, the results obtained did shed light into the limitations of
the SPICE 2 model. Chapter 6 will discuss the conclusions drawn from analyzing the
results displayed in this chapter, as well put forth some recommendations for further

research in this area.
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6. Conclusions and Recommendations

6.1 Introduction

The main purpose of this thesis has been to research and design effective dither
inputs for enhanced parameter identifiability for the SPICE 2 flexible space structure.
Previous work by Gustafson [2] indicated the need for enhanced parameter identification.
Thus, this research with the SPICE 2 structure, utilizing moving-bank Multiple Model
Adaptive Estimation and Control (MMAE/MMAC) algorithms, has been a direct
continuation of Gustafson’s work. Purposeful excitation dither inputs consisting of
sinusoidal waves, square waves, and wide band noise were investigated, as well as
purposeful rigid-body slew commands. The rigid-body motion was applied to determine
the effects on enhanced parameter identification through natural excitation of the
structure’s bending modes. Other issues explored in this research were: (1) a new
discretized parameter space, (2) increased measurement precision, and (3) a reduced-order

filter/controller.

The ultimate conclusions reached in the course of this research are: (1) dither-
enhanced parameter estimation performs very well for the SPICE 2 flexible structure, and
(2) better measurement precision and reduced-order filter/controller designs (up to 26
structure modes) do not yield adequate state estimation and control performance for the
MMAE/MMAC algorithms.
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6.2 Conclusions

The analysis conducted in this research began with a verification of Gustafson’s
work with the single filter/controller design. This was followed by establishing baseline
performances with the 7-point parameter space, consisting of performance against (1) an
unchanging parameter value and (2) a varying parameter value, both with no dither
enhancement. Here, it was seen that the ME/A method performed better than the ME/I
method of hypothesis conditional probability computation. In contrast, all of the
performance evaluations conducted with purposefully selected dither inputs indicated that
the ME/I method provided better parameter identification than the ME/A method. Of the
various forms of dither inputs evaluated for parameter identification performance, each
performed very well. While the sinusoid dither signals were better able to “latch” on to
the true parameter value, the best parameter-identification dither frequency had to be
correctly determined. With the wide band noise dither input, the “latching” on effect was
not seen, however, a broad range of dither frequencies could be used with very good

performance.

Thus, each type of dither input has its advantage, and a combination of the two
types could be used in a real application. For example, wide band noise dither could help
identify the correct range of frequencies. The noise band could be varied to the point that
the parameter-identification frequency would be known. Then, a switch to a sinusoid
dither at this frequency could be made.

Parameter identifiability enhancement was also observed from the effects of rigid-
body rotation-induced excitation of the bending modes. However, the effects from this
type of commanded slew input were not as pronounced as those from the sinusoid and
wide band noise dither inputs. Indeed, parameter tracking was improved with rigid-body
slewing and could possibly be exploited in a real situation whenever the structure is moved
(pointed) in a different direction.
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The conclusion drawn from simulations conducted with the new 29-point
discretized parameter space is that this new parameter space is a viable alternative to the
7-point space, if no dither enhancement is to be used. With dither-enhanced parameter
identification, the two parameter space discretizations seemed to perform equally well.
Thus, dither enhancement could be used with the 7-point parameter space as an alternative

to the larger memory storage requirement with the 29-point parameter space.

The analyses performed with the increased measurement precision and the
reduced-order filter/controller revealed some limitations with the SPICE 2 model. The
conclusions drawn from these results are: (1) more and/or different types of measurements
may be necessary for improved MMAC performance, (2) better and/or additional

actuators should be considered.

6.3  Recommendations
Dither-enhanced parameter identification was shownr by this research to be very
effective with the moving-bank MMAE/MMAC algorithms, as applied to the SPICE 2

flexible structure. Recommendations for further research are:
1. Implement the latest SPICE structure model.
2. Apply the dither-enhancing methods to other multiple model adaptive research.

3. Investigate the poor parameter tracking performance of the 29-point parameter

space with rigid-body rotation-induced excitation of the bending modes.

4. Consider more than just a single scalar multiplier on bending mode frequencies
as the uncertain parameter. Use a vector of parameters, thereby allowing for
different relative spacing of the modal frequencies as well as their simultaneous

movement on the frequency axis.
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Appendix A: MMAE, MMAC, and Parameter Estimation Performance Plots

This appendix contains all the plots corresponding to the results discussion in
Chapter 5. Figures A-1 through A-4 and A-29 contain mean t one standard deviation
(x0) plots of estimation error and LOS error. Each of these four figures contain four
plots, labeled (a), (b), (c), and (d). (a) and (b) correspond to the X- and Y-axis estimation
error plots; (c) and (d) correspond to the X- and Y-axis LOS error plots. The remaining
figures are plots of the mean parameter estimate. Shown also on these plots is the true

parameter value, for comparison.
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Figure A-4. Multiple Filter Estimation and Control Baseline (Closed Loop, ME/I)
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Figure A-5. 7-Point Parameter Space: True Parameter Jump, No Dither (ME/A)

Omegakocaﬁon

-

1 L i

0 2 4 6 8 10
Time (seconds)

Figure A-6. 7-Point Parameter Space: True Parameter Jump, No Dither (ME/T)

Omega Location
o 2]

N

Figure A-7. 7-Point Parameter Space: Parameter Variation, No Dither (ME/A)

A-6




10
Time (seconds)

Figure A-8. 7-Point Parameter Space: Parameter Variation, No Dither (ME/T)

N

o

SmegaLocaﬁon

L 1

-

4 6
Time (seconds)

10

Figure A-9. 7-Point Parameter Space: Swept Sine Wave Dither, 29-33 Hz (ME/A)

(+2)

H

Omega Location
N

Figure A-10. 7-Point Parameter Space: Sine Wave Dither (ME/A)

10
Time (seconds)

A-7

15




=

0 5 10 15 20
Time (seconds)

Figure A-11. 7-Point Parameter Space: Sine Wave Dither (ME/I)

\ _ .
0 5 10 15 20
Time (seconds)

Figure A-12. 7-Point Parameter Space: Square Wave Dither (ME/A)

Omega Location
o [+]

N

10 15 20
Time (seconds)

Figure A-13. 7-Point Parameter Space: Square Wave Dither (ME/I)
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